Innovative Delivery of Cu(II) Ions by a Nanostructured Hydroxyapatite: Potential Application in Planta to Enhance the Sustainable Control of Plasmopara viticola

Author:

Battiston Enrico12,Antonielli Livio3,Di Marco Stefano4,Fontaine Florence2ORCID,Mugnai Laura1ORCID

Affiliation:

1. Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Sezione Patologia Vegetale ed Entomologia, Università degli Studi di Firenze, Firenze I-50144, Italy;

2. Structure Fédératrice de Recherche Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Unité Recherche EA 4707, Résistance Induite et Bioprotection des Plantes, Reims F-51687, France;

3. Health & Environment Department, Bioresources Unit, Austrian Institute of Technology GmbH, Tulln A-3430, Austria; and

4. Istituto di Biometeorologia, Consiglio Nazionale delle Ricerche, Bologna I-40129, Italy

Abstract

Downy mildew caused by Plasmopara viticola is probably the most serious disease affecting grapevine (Vitis vinifera), and it is capable of causing consistent yield losses. In organic viticulture, the only acceptable and effective means to control the disease is by applications of copper-based fungicides. However, the use of copper in agriculture is expected to be further restricted by European countries because of its critical ecotoxicological and phytotoxicological profile. Research on ways to reduce the effective amounts of copper by developing innovative formulations as well as optimization of the distribution and persistence of copper-based pesticides for downy mildew control seems to be a promising approach. This research investigated the delivery properties of biomimetic synthetic hydroxyapatite (HA) to enhance the biological activity of Cu(II) ions. To this aim, four Cu(II) compounds were formulated with the innovative HA component and applied in an in vitro antifungal assay against Botrytis cinerea, a common grapevine pathogen suitable for in vitro activity tests, and finally, in in planta efficacy assays against P. viticola under greenhouse conditions. The in vitro results highlighted a different inhibition activity for each Cu(II) compound and indicated a different interaction between the cupric compounds and HA, potentially related to different delivery mechanisms of Cu(II) from HA. Under greenhouse conditions, additional findings on the biological activity of the applied formulations were gained, especially on the efficacy of various concentrations of HA in the formulations, the influence of dose variation of the formulation and the treatment efficiency, and the persistence under rain-washing effect. This study revealed promising findings on the formulation based on the HA particles and the soluble Cu(II) compound, which resulted in reduced disease severity and incidence in all of the experimental conditions, including the lower Cu(II) dosage and the rain-washing effect. This suggests that coformulation of the three insoluble Cu(II) compounds with HA might significantly enhance the adsorption and release of Cu(II) ions by HA particles.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3