Comparative Transcriptomic Analysis of Wheat Cultivars in Response to Xanthomonas translucens pv. cerealis and Its T2SS, T3SS, and TALEs Deficient Strains

Author:

Shah Syed Mashab Ali12ORCID,Khojasteh Moein12,Wang Qi12,Haq Fazal123,Xu Xiameng12,Li Ying12,Zou Lifang12,Osdaghi Ebrahim4ORCID,Chen Gongyou12ORCID

Affiliation:

1. School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Agriculture and Biology/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai Jiao Tong University, Shanghai 200240, China

3. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, 91198 Gif-sur-Yvette, France

4. Department of Plant Protection, University of Tehran, Karaj, Iran

Abstract

Xanthomonas translucens pv. cerealis causes bacterial leaf streak disease on small grain cereals. Type II and III secretion systems (T2SS and T3SS) play a pivotal role in the pathogenicity of the bacterium, while no data are available on the transcriptomic profile of wheat cultivars infected with either wild type (WT) or mutants of the pathogen. In this study, WT, TAL-effector mutants, and T2SS/T3SS mutants of X. translucens pv. cerealis strain NXtc01 were evaluated for their effect on the transcriptomic profile of two wheat cultivars, ‘Chinese Spring’ and ‘Yangmai-158’, using Illumina RNA-sequencing technology. RNA-Seq data showed that the number of differentially expressed genes (DEGs) was higher in Yangmai-158 than in Chinese Spring, suggesting higher susceptibility of Yangmai-158 to the pathogen. In T2SS, most suppressed DEGs were related to transferase, synthase, oxidase, WRKY, and bHLH transcription factors. The gspD mutants showed significantly decreased disease development in wheat, suggesting an active contribution of T2SS in virulence. Moreover, the gspD mutant restored full virulence and its multiplication in planta by addition of gspD in trans. In the T3SS-deficient strain, downregulated DEGs were associated with cytochrome, peroxidases, kinases, phosphatases, WRKY, and ethylene-responsive transcription factors. In contrast, upregulated DEGs were trypsin inhibitors, cell number regulators, and calcium transporter. Transcriptomic analyses coupled with quantitative real-time-PCR indicated that some genes are upregulated in Δ tal1/Δ tal2 compared with the tal-free strain, but no direct interaction was observed. These results provide novel insight into wheat transcriptomes in response to X. translucens infection and pave the way for understanding host–pathogen interactions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Transgenic Major Program

Iran National Science Foundation

University of Tehran

Iranian Ministry of Science and Technology

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3