The Type III Effector AvrBsT Enhances Xanthomonas perforans Fitness in Field-Grown Tomato

Author:

Abrahamian Peter1ORCID,Timilsina Sujan1,Minsavage Gerald V.1,KC Sushmita1,Goss Erica M.1,Jones Jeffrey B.1,Vallad Gary E.1

Affiliation:

1. First, second, fourth, and seventh authors; Gulf Coast and Research Education Center, Wimauma, FL; first, second, third, fifth, sixth, and seventh authors: Department of Plant Pathology, University of Florida, Gainesville; and fifth author: Emerging Pathogens Institute, University of Florida, Gainesville.

Abstract

Type III secretion system effectors contribute to pathogenicity through various mechanisms. Recent surveys showed an increasing prevalence of the type III secretion effector avrBsT among Xanthomonas perforans strains. We hypothesized that the acquisition of avrBsT has a fitness advantage for the pathogen. The contribution of avrBsT to fitness on tomato was evaluated based on disease severity, in planta growth, competition, and recovery rates of wild-type (WT) and avrBsT mutant strains in greenhouse and field plants. GEV872 and GEV1001, representative strains of two phylogenomic groups of X. perforans, were selected for generating avrBsT mutants. Disease severity was higher for WT strains compared with the avrBsT mutant strains. X. perforans WT and avrBsT mutant strains did not differ following leaf infiltration of greenhouse plants in direct competition and in planta growth assays. The effect of avrBsT on pathogen fitness was noticeable under field conditions. Differences in strain recovery were significant, with WT being recovered two to eight times more than avrBsT mutant strains in the case of both strains GEV872 and GEV1001. WT strains were capable of spreading longer distances across field plots compared with avrBsT mutant strains. Findings suggest that the functional AvrBsT affects the fitness of X. perforans under field conditions, making it an ideal candidate for bacterial spot resistance breeding efforts in tomato.

Funder

National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3