Changing Host Photosynthetic, Carbohydrate, and Energy Metabolisms Play Important Roles in Phytoplasma Infection

Author:

Xue Chaoling1,Liu Zhiguo1,Dai Li1,Bu Jiaodi1,Liu Mengjun1,Zhao Zhihui1,Jiang Zihui1,Gao Weilin1,Zhao Jin1ORCID

Affiliation:

1. First, fourth, seventh, eighth, and ninth: College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; first, fourth, and ninth authors: Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei 071001, China; and second, third, fifth, and sixth authors: Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China.

Abstract

Phytoplasmas parasitize plant phloem tissue and cause many economically important plant diseases. Jujube witches’-broom disease is a destructive phytoplasma disease of Chinese jujube (Ziziphus jujuba). To elucidate the influence of phytoplasma on host photosynthetic, carbohydrate and energy metabolisms, four types of jujube tissues showing disease symptoms with different severity were investigated at the structural, physiological, and molecular levels. Quantitative real-time PCR and high-performance liquid chromatography results showed that the down-regulation of genes related to photosynthesis and the lower contents of chlorophyll in diseased leaves. This clearly inhibited the light-harvesting and photosystem II activity of photosynthesis; however, overexpression of genes related to starch, sucrose and glucose synthesis led to higher contents of these carbohydrates. Meanwhile, transmission electron microscopy images revealed that dense amounts of phytoplasmas accumulated in the sieve elements of diseased petiole phloem, and the structure of the grana and stroma lamellae of chloroplasts in the diseased leaves was destroyed. Phytoplasma infection inhibited photosynthesis and led to abnormal carbohydrate accumulation in the diseased leaves. Furthermore, comparative metabolite analysis indicated that phytoplasma infection also stimulated amino acids and energy metabolisms of the diseased leaves. Continually inhibiting the photosynthetic process and stimulating carbohydrate and energy metabolisms of diseased trees may exhaust their nutrients. Our results highlight the importance of changing host metabolisms during the pathogenic process.

Funder

Funds for Hebei Distinguished Young Scholar

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3