Development of a Disease Risk Prediction Model for Downy Mildew (Peronospora sparsa) in Boysenberry

Author:

Kim Kwang Soo,Beresford Robert M.,Walter Monika

Abstract

Downy mildew caused by Peronospora sparsa has resulted in serious production losses in boysenberry (Rubus hybrid), blackberry (Rubus fruticosus), and rose (Rosa sp.) in New Zealand, Mexico, and the United States and the United Kingdom, respectively. Development of a model to predict downy mildew risk would facilitate development and implementation of a disease warning system for efficient fungicide spray application in the crops affected by this disease. Because detailed disease observation data were not available, a two-step approach was applied to develop an empirical risk prediction model for P. sparsa. To identify the weather patterns associated with a high incidence of downy mildew berry infections (dryberry disease) and derive parameters for the empirical model, classification and regression tree (CART) analysis was performed. Then, fuzzy sets were applied to develop a simple model to predict the disease risk based on the parameters derived from the CART analysis. High-risk seasons with a boysenberry downy mildew incidence >10% coincided with months when the number of hours per day with temperature of 15 to 20°C averaged >9.8 over the month and the number of days with rainfall in the month was >38.7%. The Fuzzy Peronospora Sparsa (FPS) model, developed using fuzzy sets, defined relationships among high-risk events, temperature, and rainfall conditions. In a validation study, the FPS model provided correct identification of both seasons with high downy mildew risk for boysenberry, blackberry, and rose and low risk in seasons when no disease was observed. As a result, the FPS model had a significant degree of agreement between predicted and observed risks of downy mildew for those crops (P = 0.002).

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sampling for the Early Detection of Peronospora sparsa in Blackberry Nursery Stock Plants;Plant Health Progress;2024-01-12

2. AI-Based Smart Farming Technology Using IoT;Intelligent Systems and Sustainable Computing;2023

3. Machine Learning in Precision Agriculture: A Survey on Trends, Applications and Evaluations Over Two Decades;IEEE Access;2022

4. Applications of Artificial Intelligence for the Development of Sustainable Agriculture;Agro-biodiversity and Agri-ecosystem Management;2022

5. Artificial Intelligence (AI) for Agricultural Sector;2021 International Conference on Control, Automation, Power and Signal Processing (CAPS);2021-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3