A Novel Fix¯ Symbiotic Mutant of Lotus japonicus, Ljsym105, Shows Impaired Development and Premature Deterioration of Nodule Infected Cells and Symbiosomes

Author:

Hossain Md. Shakhawat,Umehara Yosuke,Kouchi Hiroshi

Abstract

Nitrogen-fixing symbiosis between legume plants and rhizobia is established through complex interactions between two symbiotic partners. To identify the host legume genes that play crucial roles in such interactions, we isolated a novel Fix¯ mutant, Ljsym105, from a model legume Lotus japonicus MG-20. The Ljsym105 plants displayed nitrogen-deficiency symptoms after inoculation with Mesorhizobium loti under nitrogen-free conditions, but their growth recovered when supplied with nitrogen-rich nutrients. Ljsym105 was recessive and monogenic and mapped on the upper portion of chromosome 4. The mutant Ljsym105 formed an increased number of small and pale-pink nodules. Nitrogenase (acetylene reduction) activity per nodule fresh weight was low but retained more than 50% of that of the wild-type nodules. Light and electron microscopic observations revealed that the Ljsym105 nodule infected cells were significantly smaller than those of wild-type plants, contained enlarged symbiosomes with multiple bacteroids, and underwent deterioration of the symbiosomes prematurely as well as disintegration of the whole infected cell cytoplasm. These results indicate that the ineffectiveness of the Ljsym105 nodules is primarily due to impaired growth of infected cells accompanied with the premature senescence induced at relatively early stages of nodule development. These symbiotic phenotypes are discussed in respect to possible functions of the LjSym105 locus in the symbiotic interactions required for establishment of the nitrogen-fixing symbiosis.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3