Organic Acids, Sugars, and l-Tryptophane in Exudates of Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere Bacteria

Author:

Kamilova Faina,Kravchenko Lev V.,Shaposhnikov Alexander I.,Azarova Tatiyana,Makarova Nataliya,Lugtenberg Ben

Abstract

The influence of stonewool substrate on the exudation of the major soluble carbon nutrients and of the auxin precursor tryptophane for Pseudomonas biocontrol agents was studied. To this end, the composition of the organic acids and sugars, as well that of tryptophane, of axenically collected exudates of seed, seedlings, and roots of tomato, cucumber, and sweet pepper was determined. The major results were as follows. i) The total amount of organic acid is much higher than that of total sugar. ii) Exudation of both organic acids and sugars increases during plant growth. iii) Citric, succinic, and malic acids represent the major organic acids, whereas fructose and glucose are the major sugars. iv) Compared with glass beads as a neutral substrate, stonewool substantially stimulates exudation of organic acids and sugars. v) It appeared that enhanced root-tip-colonizing bacteria isolated previously from the rhizosphere of tomato and cucumber grow much better in minimal medium with citrate as the sole carbon source than other, randomly selected rhizobacteria do. This indicates that the procedure which selects for excellent root-tip colonizers enriches for strains which utilize the major exudate carbon source citrate. vi) The content of L-tryp-tophane, the direct precursor of auxin, is approximately 60-fold higher in seedling exudates of tomato and sweet pepper than in cucumber seedling exudates, indicating a higher possibility of plant growth stimulation after inoculation with auxin-producing rhizobacteria for tomato and sweet pepper crops than for cucumber. However, the biocontrol strain Pseudomonas fluorescens WCS365, which is able to convert tryptophane into auxin, did not stimulate growth of these three crops. In contrast, this strain did stimulate growth of roots of radish, a plant which exudes nine times more tryptophane than tomato does.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3