Influence of Temperature and Relative Humidity on Sporulation of Cercospora zeae-maydis and Expansion of Gray Leaf Spot Lesions on Maize Leaves

Author:

Paul P. A.1,Munkvold G. P.2

Affiliation:

1. Department of Plant Pathology, Iowa State University, Ames 50110

2. Pioneer Hi-Bred International, Johnston, IA 50131

Abstract

Controlled environment studies were conducted to determine the effects of temperature on the expansion of lesions of gray leaf spot, and the effects of temperature and relative humidity on the sporulation of Cercospora zeae-maydis on maize (Zea mays). For the lesion expansion experiment, potted maize plants were spray inoculated at growth stage V6, bagged, and incubated at 25 to 28°C and 100% relative humidity for 36 to 40 h. Symptomatic plants were transferred to growth chambers and exposed to constant temperatures of 25, 30, and 35°C. Lesion area (length by width) was measured at 4-day intervals for 17 days. For sporulation studies, lesions were excised from naturally infected maize leaves, measured, and incubated at constant temperature (20, 25, 30, or 35°C) and relative humidity (70, 80, 90, or 100%) for 72 h. Sporulation was estimated as the number of conidia per square centimeter of diseased leaf tissue. A quadratic function was used to model the relationship between log-transformed conidia per square centimeter at 100% relative humidity and temperature. Temperature had a significant effect on lesion expansion (P ≤ 0.05). At 25 and 30°C, the rate of lesion expansion was significantly higher than at 35°C (P ≤ 0.05). The largest lesions and the highest mean rate of lesion expansion were observed at 30°C; however, the mean lesion expansion rate at this temperature was not significantly different from that at 25°C. The interaction effect of temperature and relative humidity on the log of conidia per square centimeter of diseased tissue was significant (P ≤ 0.05). At 100% relative humidity, the effect of temperature on sporulation was significant (P ≤ 0.05), with maximum spore production occurring at 25 and 30°C. The quadratic model explained between 49 and 80% of the variation in the log of conidia per square centimeter at 100% with variation in temperature. These results suggest that the rapid increase in gray leaf spot severity generally observed during mid- and late summer may be due to favorable conditions for lesion expansion during this period. When relative humidity is >95%, expanding lesions may serve as a source of inoculum for secondary infections.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3