Management of Tomato Bacterial Spot in the Field by Foliar Applications of Bacteriophages and SAR Inducers

Author:

Obradovic A.1,Jones J. B.1,Momol M. T.2,Balogh B.3,Olson S. M.4

Affiliation:

1. Department of Plant Pathology, University of Florida, Gainesville 32611

2. Plant Pathology Department, North Florida Research and Education Center, University of Florida, Quincy 32351

3. Department of Plant Pathology, University of Florida, Gainesville

4. Horticultural Sciences Department, North Florida Research and Education Center, University of Florida, Quincy

Abstract

Various combinations of the harpin protein, acibenzolar-S-methyl, and bacteriophages were compared for controlling tomato bacterial spot in field experiments. Harpin protein and aciben-zolar-S-methyl were applied every 14 days beginning twice before transplanting and then an additional four applications throughout the season. Formulated bacteriophages were applied prior to inoculation followed by twice a week at dusk. A standard bactericide treatment, consisting of copper hydroxide plus mancozeb, was applied once prior to inoculation and then every 7 days, while untreated plants served as an untreated control. Experiments were conducted in north and central Florida fields during fall 2001, spring 2002, and fall 2002. In three consecutive seasons, acibenzolar-S-methyl applied in combination with bacteriophage or bacteriophage and harpin significantly reduced bacterial spot compared with the other treatments. However, it did not significantly affect the total yield compared with the standard or untreated control. Application of host-specific bacteriophages was effective against the bacterial spot pathogen in all three experiments, providing better disease control than copper-mancozeb or untreated control. When results of the disease severity assessments or harvested yield from the bacteriophage-treated plots were grouped and compared with the results of the corresponding nonbacteriophage group, the former provided significantly better disease control and yield of total marketable fruit.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3