Detection of Virulence to Wheat Stem Rust Resistance Gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda

Author:

Pretorius Z. A.1,Singh R. P.2,Wagoire W. W.3,Payne T. S.4

Affiliation:

1. Department of Plant Pathology, University of the Orange Free State, Bloemfontein 9300, South Africa

2. CIMMYT, Lisboa 27, Apdo. Postal 6-641, Mexico D.F., Mexico

3. NAARI, P.O. Box 7084, Kampala, Uganda

4. CIMMYT, P.O. Box 5689, Addis Ababa, Ethiopia

Abstract

In much of the world, resistance to stem rust in wheat, caused by Puccinia graminis f. sp. tritici, is based at least in part on the gene Sr31. During February 1999, high levels of stem rust infection were observed on entries in wheat (Triticum aestivum) grown in a nursery at Kalengyere Research Station in Uganda. Because several of the rusted entries were known to carry the 1BL-1RS chromosome translocation containing the Sr31, Lr26, and Yr9 genes for rust resistance, virulence to Sr31 was suspected. Urediniospores, collected in bulk from rusted stems of seven entries containing Sr31, were suspended in light mineral oil and sprayed on primary leaves of 7-day-old seedlings of South African wheat cv. Gamtoos (=Veery #3, pedigree: Kvz/Buho‘S’//Kal/BB). Plants were kept overnight at 19 to 21°C in a dew chamber before placement in a greenhouse at 18 to 25°C. After ≈14 days, urediniospores were collected from large, susceptible-type stem rust pustules and subsequently increased on Gamtoos, which served as a selective host for the new rust culture, designated Pgt-Ug99. Pathogenicity of Pgt-Ug99 was studied in seedling tests of available wheats containing Sr31, as well as other stem rust differential lines. All seedling tests were conducted at least three times in independent inoculations. Isolate Pgt-Ug99 was not virulent to Avocet‘S’/Yr9 (Australian line containing Sr26) or Oom Charl (South African cultivar) but was virulent to the other Sr31 testers: Alondra ‘S’, Bobwhite, Chokka, Clement, Federation/Kavkaz, Gamtoos, Grebe, Kavkaz, Letaba, Line E/Kavkaz, RL6078, and Veery ‘S’. Virulence to Sr31 (infection types [ITs] 3-3 to 3++4) was clearly contrasted by the low reactions (ITs 0; to 1) produced by UVPgt53, a South African pathotype avirulent to Sr31. According to the reactions of the differential lines, Pgt-Ug99 is avirulent to Sr21, -22, -24, -25, -26, -27, -29, -32, -33, -34, -35, -36, -39, -40, -42, and -43, Agi, and Em and virulent to Sr5, -6, -7b, -8a, -8b, -9b, -9e, -9g, -11, -15, -17, -30, -31, and -38. Virulence to the T. ventricosum-derived gene Sr38, which is linked to Lr37 and Yr17 and occurs in cultivars from Australia, the United Kingdom, and the United States, was not known previously (1). Both Pgt-Ug99 and UVPgt53 produced a continuum of ITs (; to 2+3) on Petkus rye (obtained from the USDA-ARS National Small Grains Collection, Aberdeen, ID), the original Sr31 donor source. Pgt-Ug99 did not appear more virulent than UVPgt53 on Petkus. All triticales tested, as well as oat cv. Overberg, were highly resistant to Pgt-Ug99. According to McIntosh et al. (1), Huerta-Espino mentioned a Sr31-virulent culture from Turkey, but this could not be confirmed. Should the Sr31-virulent pathotype migrate out of Uganda, it poses a major threat to wheat production in countries where the leading cultivars have resistance based on this gene. Reference: (1) R. A. McIntosh et al. 1995. Wheat Rusts: An Atlas of Resistance Genes. Kluwer Academic Publishers, Dordrecht, the Netherlands.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3