Serratia marcescens, a Phloem-Colonizing, Squash Bug -Transmitted Bacterium: Causal Agent of Cucurbit Yellow Vine Disease

Author:

Bruton B. D.1,Mitchell F.2,Fletcher J.3,Pair S. D.4,Wayadande A.5,Melcher U.6,Brady J.7,Bextine B.5,Popham T. W.8

Affiliation:

1. United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lane, OK 74555

2. Texas Agricultural Experiment Station, Stephenville 76401

3. Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078

4. USDA-ARS, Lane, OK

5. Department of Entomology and Plant Pathology, Oklahoma State University

6. Department of Biochemistry and Molecular Biology, Oklahoma State University

7. Texas Agricultural Experiment Station

8. USDA-ARS, Stillwater, OK 74075

Abstract

Cucurbit yellow vine disease (CYVD), which can inflict heavy losses to watermelon, pumpkin, cantaloupe, and squash in U.S. production areas from the midwest to northeastern states, causes phloem discoloration, foliar yellowing, wilting, and plant decline. Bacteria were cultured from the phloem of crown sections of symptomatic plants of Citrullus lanatas and Cucurbita pepo. Those bacteria testing positive in CYVD-specific polymerase chain reaction (PCR) were all gram negative and appeared morphologically identical, producing creamy white, smooth, entire, convex colonies on Luria-Bertani or nutrient agar. Characterized cucurbit-derived strains of Serratia marcescens were introduced into greenhouse-grown squash plants by puncture inoculation and into field-grown squash plants by enclosure with S. marcescens-fed squash bugs, Anasa tristis. Up to 60% of the bacteria-inoculated plants in the greenhouse and up to 17% of field plants caged with inoculative squash bugs developed phloem discoloration and tested positive for S. marcescens by CYVD-specific PCR. None of the controls developed phloem discoloration or tested positive by PCR. Of the diseased field plants, 12% (2 of 35) also yellowed, wilted, and collapsed, exhibiting full symptom development of CYVD. However, neither plant collapse nor decline was observed in the greenhouse-grown, puncture-inoculated plants. The morphology, growth habit, and PCR reaction of bacteria cultured from crown tissue of a subset of plants in each experimental group were indistinguishable from those of the inoculum bacteria. Evidence presented from our studies confirms that the squash bug can transmit S. marcescens, the CYVD causal bacterium. The S. marcescens-A. tristis relationship described here is the first instance in which the squash bug has been identified as a vector of a plant pathogen. Our experiments represent a completion of the steps of Koch's postulates, demonstrating that S. marcescens is the causal agent of CYVD and that the squash bug, A. tristis, is a vector of the pathogen.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3