Rubber Tree (Hevea brasiliensis) Bark Necrosis Syndrome III: A Physiological Disease Linked to Impaired Cyanide Metabolism

Author:

Chrestin H.1,Sookmark U.1,Trouslot P.1,Pellegrin F.1,Nandris D.1

Affiliation:

1. IRD, Montpellier, France

Abstract

First attempts to discriminate between tapping panel dryness (TPD) and bark necrosis (BN), two Hevea sp. bark diseases leading to the cessation of latex production, showed differences in latex biochemical characteristics (1). Further, contrary to TPD, BN is characterized by inner phloem necrosis starting at the rootstock/scion junction (RS/S) and spreading upward to the tapping cut. Recent etiological (3) and epidemiological studies did not provide evidence of a causative pathogen for BN, but showed that BN is favored by a combination of various stresses (2). Searching for molecular markers of BN using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses highlighted differential expression of some proteins in the latex and bark, especially a 67-kDa protein, which accumulates in the inner phloem of the BN trees. This protein was identified by peptide microsequencing as a linamarase (cyanogenic β-glucosidase). This led to the suspicion of the involvement of cyanogenesis in the spread of the syndrome inside the inner bark. The cDNAs of enzymes involved in cyanide (CN) metabolism (linamarase, hydroxynitrile lyase, and cyanoalanine synthase) were cloned from our Hevea sp. phloem specific cDNA library. In addition, the most BN-susceptible rubber clones were shown to exhibit higher cyanide potentions in the leaves and bark, together with low cyanoalanine synthase (CAS) gene expression and activity. Furthermore, linamarine (the cyanogene glucoside substrate of linamarase) was shown to accumulate in the phloem at the base of the trunk, especially above the rootstock/scion junction. The results of biochemical and gene expression studies associated with recent ecophysiological advances (2) strongly suggest a possible cell decompartmentalization near the RS/S junction, resulting in a local release of toxic concentration of highly diffusive CN. This, combined with a lethal imbalance between cyanogenic and CN-detoxifying activities (CAS) in the phloem of BN trees, could lead to poisoning of neighboring cells and to the spread of tissue necrosis toward the tapping cut. In conclusion, after providing evidence of exogenous factors favoring BN (2), this report highlights endogenous disorders that may be at the origin of this physiological disease leading to BN. References: (1) D. Nandris et al. Eur. J. For. Pathol. 21:325, 1991. (2) D. Nandris et al. Plant Dis. 88:1047, 2004.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3