First Report of Solanum physalifolium as a Host Plant for Phytophthora infestans in Sweden

Author:

Andersson B.1,Johansson M.1,Jönsson B.2

Affiliation:

1. Swedish University of Agricultural Sciences, Department of Ecology and Crop Production, P.O. Box 7043, S-75007 Uppsala, Sweden

2. Swedish Board of Agriculture, Plant Protection Centre, P.O. Box 12, S-23053 Alnarp, Sweden

Abstract

In the early summer of 2003, lesions resembling those caused by Phytophthora infestans (Mont.) de Bary on potato were observed on Solanum physalifolium Rusby var. nitidibaccatum (Bitter) Edmonds (2) that was growing as a weed in a parsnip (Pastinaca sativa) field in southern Sweden. When infected leaves of S. physalifolium were observed under the microscope (×200 magnification), sporangia with the same shape and size as those of P. infestans were observed. Pieces of infected leaves of S. physalifolium were put under tuber slices of S. tuberosum (cv. Bintje) in petri dishes and kept at 20°C. After 4 days, mycelium grew through the slices and sporulated profusely. The sporangia on the slices were of the same shape and size as those observed on the infected S. physalifolium leaves. In Sweden, the ratio of A1 and A2 mating types of P. infestans is 50:50, and oospores are commonly found in infected potato crops (1), so isolates from S. physalifolium were tested for mating type by growing them together with reference isolates of a known mating type on agar plates. Nine of the tested isolates were A1 mating type and six were A2 mating type. One self-fertile isolate was found. Naturally infected leaves of S. physalifolium were incubated at 20°C at 100% relative humidity so the lesions could coalesce and to facilitate oospore formation. After 5 days, oospores identical to those of P. infestans were observed under the microscope (×200 magnification). Sporangia produced by isolates originating from S. physalifolium and S. tuberosum were harvested, and a suspension containing 104 sporangia per ml from each isolate was prepared. Five leaves each of S. nigrum, S. physalifolium, and S. tuberosum (cv. Bintje), were inoculated with 10 μl of each sporangial suspension. Inoculated leaves were incubated in sealed petri dishes at 15°C. After 4 days, all S. tuberosum leaves were infected. After 7 days, two of five leaves of S. physalifolium inoculated with the S. tuberosum isolate and two of five S. physalifolium leaves inoculated with the isolate from S. physalifolium were infected. All lesions produced sporangia similar to those formed by P. infestans. S. nigrum was not infected by any of the isolates. The ability of S. physalifolium to act as a host plant for P. infestans producing sporangia during the growing season and oospores for survival between growing seasons may increase the problems of controlling late blight in potato in Sweden. References: (1) J. Dahlberg et al. Field survey of oospore formation by Phytophthora infestans. (Poster Abstr.) Pages 134–135 In: Late Blight: Managing the Global Threat. Proc Global Late Blight Conf. Charlotte Lizarraga, ed. Centro Internacional De La Papa, On-line publication, ISBN 929060-215-5, 2002. (2) J. M. Edmonds. Bot. J. Linn. Soc. 92:1, 1986.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3