Affiliation:
1. Department of Horticulture
2. Department of Plant Pathology
3. Department of Horticulture, University of Georgia, Athens 30602
Abstract
Real-time irrigation monitoring and control afforded by dielectric soil moisture sensors allows for precise substrate volumetric water content (VWC) to be maintained under dynamic experimental conditions. A case study was conducted with Petunia ×hybrida ‘Dreams Red’ grown using a sensor-based irrigation system with half of the plants infected with Pythium aphanidermatum. Four soilless substrate moisture profiles were maintained postinoculation, with VWCs set at 0.2, 0.3, and 0.4 m3/m3, as well as a cyclic soil moisture profile that underwent a 0.25-m3/m3 change in VWC (0.18 to 0.43 m3/m3) between irrigation events. Once established, half of the plants in each trial were inoculated and grown out for one month under the defined irrigation regimes. The probability of root infection was lowered when VWC was maintained at 0.2 m3/m3 compared with 0.4 m3/m3 and cyclic (0.18 to 0.43 m3/m3) VWC. Mortality and biomass were unaffected by irrigation regime in both uninoculated and inoculated treatments. The soil moisture-sensor-based automated irrigation system was successfully able to maintain programmed irrigation profiles throughout the trial, under dynamic greenhouse conditions, increasing trust in the data and resulting conclusions of the study.
Subject
Horticulture,Plant Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献