Potential Biological Control of Endophytic Streptomyces sp. 5-4 Against Fusarium Wilt of Banana Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4

Author:

Yun Tianyan12,Jing Tao2,Zhou Dengbo1,Zhang Miaoyi1,Zhao Yankun1,Li Kai1,Zang Xiaoping2,Zhang Lu3,Xie Jianghui1,Wang Wei1ORCID

Affiliation:

1. Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China

2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China

3. Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China

Abstract

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most disastrous fungal diseases. Biological control is a promising strategy for controlling Fusarium wilt of banana. To explore endophytic actinomycetes as biocontrol resources against Foc TR4, antagonistic strains were isolated from different tissues of medicinal plants. Here, a total of 144 actinomycetes were isolated and belonged to Nonomuraea, Kitasatospora, and Streptomyces. Forty-three isolates exhibited antifungal activities against Foc TR4. The strain labeled with 5-4 isolated from roots of Piper austrosinense had a broad-spectrum antifungal activity by the production of chitinase and β-1,3-glucanase and was identified as Streptomyces hygroscopicus subsp. hygroscopicus 5-4. Furthermore, disease index of banana wilt was significantly reduced by application of strain 5-4 in comparison with application of Foc TR4 alone. Exogenous application of strain 5-4 increased the expression levels of defense genes such as (PAL), peroxidase (POD), pathogenesis-related protein 1 (PR-1), hydrolytic enzymes (β-1,3-glucanase), lysin motif receptor kinase 1 (LYK-1), and mitogen-activated protein kinase 1 (MPK-1). The antifungal mechanism assay demonstrated that extracts of strain 5-4 inhibited spore gemination and hyphal growth of Foc TR4, and caused abnormally swollen, deformity, and rupture of Foc TR4 hypha. Thus, S. hygroscopicus subsp. hygroscopicus 5-4 could be used as a potential biological agent for controlling Fusarium wilt of banana.

Funder

Natural Science Foundation of Hainan Province

Central Public-Interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences

China Agricultural Research System

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3