The Effect of Temperature and Moisture on Colonization of Apple Fruit and Branches by Botryosphaeria dothidea

Author:

Liu Jing1,Zhang Lu-yao1,Wang Hua-yu1,Liu Na1,Lian Sen1,Xu Xiang-ming2ORCID,Li Bao-hua1ORCID

Affiliation:

1. College of Plant Health and Medicine, Qingdao Agricultural University; Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China

2. NIAB EMR, East Malling, West Malling, Kent, ME19 6BJ, U.K.

Abstract

Botryosphaeria dothidea causes severe disease of apple trees in China. The process of conidium germination, colonization, and infection of apple fruit and branches was examined on ‘Fuji’ apple and the effect of temperature, surface wetness and relative humidity (RH), and host surface washates on these processes was studied in controlled environments. Initial germ tube development and hyphal growth resulted in the colonization of the host surface without forming an infection structure. Hyphae expanded radially across the host surface and, after entering lenticels, developed into a dense mycelium mass or differentiated pseudoparenchyma. Hyphae from the bottom of the pseudoparenchyma either directly penetrated the lenticel surface intercellularly through the cell layer, or formed an undifferentiated hypha that invaded the lenticel through cracks formed during the lenticel development. Conidial germination and hyphal colonization occurred at 10 to 40°C, with an optimum of approximately 28°C. Conidial germination required an RH > 95% or surface wetness but, for hyphal colonization, an RH > 90% was sufficient. Conidia germinated and formed germ tubes within 1 h under optimum conditions. However, the pathogen required a longer period at RH > 90% or surface wetness for hyphae to colonize and form pseudoparenchyma or dense mycelia on the host surface. Hyphal colonization is a crucial stage for infection of apple tissues by B. dothidea.

Funder

China Agriculture Research System of MOF and MARA

National Key Research and Development Program of China

Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences

Taishan Scholar Construction Project of Shandong Province

Biotechnology and Biological Sciences Research Council

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3