Affiliation:
1. College of Plant Health and Medicine, Qingdao Agricultural University; Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao, Shandong 266109, P. R. China
2. NIAB EMR, East Malling, West Malling, Kent, ME19 6BJ, U.K.
Abstract
Botryosphaeria dothidea causes severe disease of apple trees in China. The process of conidium germination, colonization, and infection of apple fruit and branches was examined on ‘Fuji’ apple and the effect of temperature, surface wetness and relative humidity (RH), and host surface washates on these processes was studied in controlled environments. Initial germ tube development and hyphal growth resulted in the colonization of the host surface without forming an infection structure. Hyphae expanded radially across the host surface and, after entering lenticels, developed into a dense mycelium mass or differentiated pseudoparenchyma. Hyphae from the bottom of the pseudoparenchyma either directly penetrated the lenticel surface intercellularly through the cell layer, or formed an undifferentiated hypha that invaded the lenticel through cracks formed during the lenticel development. Conidial germination and hyphal colonization occurred at 10 to 40°C, with an optimum of approximately 28°C. Conidial germination required an RH > 95% or surface wetness but, for hyphal colonization, an RH > 90% was sufficient. Conidia germinated and formed germ tubes within 1 h under optimum conditions. However, the pathogen required a longer period at RH > 90% or surface wetness for hyphae to colonize and form pseudoparenchyma or dense mycelia on the host surface. Hyphal colonization is a crucial stage for infection of apple tissues by B. dothidea.
Funder
China Agriculture Research System of MOF and MARA
National Key Research and Development Program of China
Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences
Taishan Scholar Construction Project of Shandong Province
Biotechnology and Biological Sciences Research Council
Subject
Plant Science,Agronomy and Crop Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献