The Effect of Temperature on Disease Severity and Growth of Fusarium oxysporum f. sp. apii Races 2 and 4 in Celery

Author:

Kaur Sukhwinder1,Barakat Radwan2,Kaur Jaskirat1,Epstein Lynn1ORCID

Affiliation:

1. Department of Plant Pathology, University of California, Davis, CA 95616-8680, U.S.A.

2. Department of Plant Production & Protection, College of Agriculture, Hebron University, Hebron, Palestine

Abstract

Fusarium oxysporum f. sp. apii race 4, which is in F. oxysporum species complex (FOSC) Clade 2, causes a new Fusarium wilt of celery. We compared F. oxysporum f. sp. apii race 4 with race 2, which causes Fusarium yellows of celery and is in FOSC Clade 3. Optimal temperatures for celery yield are 16 to 18°C. Soil temperatures in California celery production areas can range up to 26°C, and the maximal rate of hyphal extension of F. oxysporum f. sp. apii races 2 and 4 in culture are 25 and 28°C, respectively. Here, we compared the effect of temperatures from 16 to 26°C on growth of F. oxysporum f. sp. apii races 4 and 2 in two celery cultivars: Challenger, which is resistant to F. oxysporum f. sp. apii race 2 and susceptible to race 4; and Sonora, which is susceptible to both F. oxysporum f. sp. apii races 2 and 4. Based on linear regressions, as temperature increases, there is an increase in the log of F. oxysporum f. sp. apii race 4 DNA concentration in celery crowns and in the reduction in plant height. Based on logistic regressions, as temperature increases, the incidence of vascular discoloration increases in celery with either F. oxysporum f. sp. apii race 2 or 4 infection. In both cultivars, temperatures of 22°C and above resulted in a significantly (α = 0.05) greater concentration of F. oxysporum f. sp. apii race 4 than race 2 in planta. The concentration of F. oxysporum f. sp. apii race 2 in crowns in ‘Challenger’ is temperature-independent and comparatively low; consequently, ‘Challenger’ is, at least partly, resistant rather than tolerant to F. oxysporum f. sp. apii race 2.

Funder

California Celery Research Advisory Board

University of California Hansen Trust

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3