Isolation, Characterization, and Genomic Investigation of a Phytopathogenic Strain of Stenotrophomonas maltophilia

Author:

Hu Ming1,Li Chuhao1,Xue Yang1,Hu Anqun1,Chen Shanshan1,Chen Yufan1,Lu Guangtao2,Zhou Xiaofan1,Zhou Jianuan1ORCID

Affiliation:

1. Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China

2. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China

Abstract

Stenotrophomonas maltophilia is ubiquitous in diverse environmental habitats. It merits significant concern because of its increasing incidence of nosocomial and community-acquired infection in immunocompromised patients and multiple drug resistance. It is rarely reported as a phytopathogen except in causing white stripe disease of rice in India and postharvest fruit rot of Lanzhou lily. For this study, Dickeya zeae and S. maltophilia strains were simultaneously isolated from soft rot leaves of Clivia miniata in Guangzhou, China, and were both demonstrated to be pathogenic to the host. Compared with the D. zeae strains, S. maltophilia strains propagated faster for greater growth in lysogeny broth medium and produced no cellulases or polygalacturonases, but did produce more proteases and fewer extracellular polysaccharides. Furthermore, S. maltophilia strains swam and swarmed dramatically less on semisolid media, but formed a great many more biofilms. Both D. zeae and S. maltophilia strains isolated from clivia caused rot symptoms on other monocot hosts, but not on dicots. Similar to previously reported S. maltophilia strains isolated from other sources, the strain JZL8 survived under many antibiotic stresses. The complete genome sequence of S. maltophilia strain JZL8 consists of a chromosome of 4,635,432 bp without a plasmid. Pan-genome analysis of JZL8 and 180 other S. maltophilia strains identified 50 genes that are unique to JZL8, seven of which implicate JZL8 as the potential pathogen contributor in plants. JZL8 also contains three copies of Type I Secretion System machinery; this is likely responsible for its greater production of proteases. Findings from this study extend our knowledge on the host range of S. maltophilia and provide insight into the phenotypic and genetic features underlying the plant pathogenicity of JZL8.

Funder

Key Area Research and Development of Guangdong Province

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3