Affiliation:
1. Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
Abstract
Downy mildew of onion caused by a soil-inhabiting water mold, Peronospora destructor, is one of the most devastating diseases that can destroy entire onion fields in a matter of days. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay that allows for rapid detection of P. destructor by visual inspection. The internal transcribed spacer 2 region of P. destructor was used to design primer sets for LAMP reactions. The optimal temperature and incubation time were determined for the most efficient primer set. In the optimized condition, the LAMP assay exhibited at least 100 times more sensitivity than conventional PCR, detecting femtogram levels of P. destructor genomic DNA (gDNA). Detection of the pathogen from a small number of spores without gDNA extraction further confirmed the high sensitivity of the assay. For specificity, the LAMP assay was negative for gDNA of other fungal pathogens that cause various diseases on onion and oomycetes, whereas the assay was positive for gDNA extracted from onion tissues showing the typical downy mildew symptoms. Finally, we examined the efficacy of the LAMP assay in detection of P. destructor in soils. Soils collected from onion fields that had been contaminated with P. destructor were solarized for 60 days. Whereas the LAMP assay was negative for the solarized soils, we were able to detect P. destructor that oversummers in fields. The LAMP assay developed in this study enables rapid detection and diagnosis of downy mildew of onion in infected tissues and in soil.
Funder
National Research Foundation of Korea
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献