TRAPPC13 Is a Novel Target of Mesorhizobium amorphae Type III Secretion System Effector NopP

Author:

Liu Dongying1ORCID,Luo Yantao1,Zheng Xiaofeng2ORCID,Wang Xinye3,Chou Minxia1,Wei Gehong1

Affiliation:

1. State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China

2. Shaanxi Hydrogeology Engineering Geology and Environmental Geology Survey Center, Shaanxi Institute of Geological Survey, Xi’an, Shaanxi 710054, China

3. Moutai Institute, Renhuai, Guizhou 564500, China

Abstract

Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13–like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

National Natural Science Foundation of China

Key R&D program of Shaanxi Province

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3