FIRE Mimics a 14-3-3–Binding Motif to Promote Phytophthora palmivora Infection

Author:

Evangelisti Edouard1,Guyon Alex1,Shenhav Liron1,Schornack Sebastian1ORCID

Affiliation:

1. University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, U.K.

Abstract

The oomycete Phytophthora palmivora infects a wide range of tropical crops worldwide. Like other filamentous plant pathogens, it secretes effectors to colonize plant tissues. Here, we characterize FIRE, an RXLR effector that contains a canonical mode I 14-3-3 phospho-sensor–binding motif that is conserved in effectors of several Phytophthora species. FIRE is phosphorylated in planta and interacts with multiple 14-3-3 proteins. Binding is sensitive to the R18 14-3-3 inhibitor. FIRE promotes plant susceptibility and co-localizes with its target around haustoria. This work uncovers a new type of oomycete effector target mechanism. It demonstrates that substrate mimicry for 14-3-3 proteins is a cross-kingdom effector strategy used by both prokaryotic and eukaryotic plant pathogens to suppress host immunity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Funder

Gatsby Charitable Foundation

H2020 European Research Council

Royal Society

Sainsbury Laboratory School of the Biological Sciences Doctoral Training Program PhD Studentship supported by Gatsby and the University of Cambridge

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RxLR Effectors: Master Modulators, Modifiers and Manipulators;Molecular Plant-Microbe Interactions®;2023-12-01

2. EVO-MPMI: From fundamental science to practical applications;Current Opinion in Plant Biology;2023-12

3. Playing with FIRE: How an RXLR Oomycete Effector Fuels Disease by Hijacking 14-3-3 Proteins;Molecular Plant-Microbe Interactions®;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3