Nicotiana benthamiana Calreticulin 3a Is Required for the Ethylene-Mediated Production of Phytoalexins and Disease Resistance Against Oomycete Pathogen Phytophthora infestans

Author:

Matsukawa Mizuki,Shibata Yusuke,Ohtsu Mina,Mizutani Aki,Mori Hitoshi,Wang Ping,Ojika Makoto,Kawakita Kazuhito,Takemoto Daigo

Abstract

Mature Nicotiana benthamiana shows strong resistance to the potato late blight pathogen Phytophthora infestans. By screening using virus-induced random gene silencing, we isolated a gene for plant-specific calreticulin NbCRT3a as a required gene for resistance of N. benthamiana against P. infestans. NbCRT3a encodes an endoplasmic reticulum quality-control (ERQC) chaperone for the maturation of glycoproteins, including glycosylated cell-surface receptors. NbCRT3a-silenced plants showed no detectable growth defects but resistance to P. infestans was significantly compromised. Defense responses induced by the treatment with INF1 (a secretory protein of P. infestans), such as production of reactive oxygen species and accumulation of phytoalexins, were suppressed in NbCRT3a-silenced N. benthamiana. Expression of an ethylene-regulated gene for phytoalexin biosynthesis, NbEAS, was reduced in NbCRT3a-silenced plants, whereas the expression of salicylic acid–regulated NbPR-1a was not affected. Consistently, induction of ethylene production by INF1 was suppressed in NbCRT3a-silenced plants. Resistance reactions induced by a hyphal wall components elicitor prepared from P. infestans were also impaired in NbCRT3a-silenced plants. However, cell death induced by active mitogen-activated protein kinase kinase (NbMEK2DD) was not affected by the silencing of NbCRT3a. Thus, NbCRT3a is required for the initiation of resistance reactions of N. benthamiana in response to elicitor molecules derived from P. infestans.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3