Effect of Silicon Absorption on Soybean Resistance to Phakopsora pachyrhizi in Different Cultivars

Author:

Arsenault-Labrecque Geneviève1,Menzies James G.2,Bélanger Richard R.1

Affiliation:

1. Département de Phytologie, Centre de Recherche en Horticulture, Université Laval, Québec, Canada G1V 0A6

2. Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB, Canada R3T 2M9

Abstract

Silicon (Si) is recognized for its prophylactic role in alleviating diseases when absorbed by plants and has been proposed as a possible solution against soybean rust, caused by Phakopsora pachyrhizi. However, little is known about its potential effects on soybean (Glycine max) because the plant's ability to absorb Si is poorly defined. In this work, our objectives were to evaluate and quantify the absorption of Si in leaves of different soybean cultivars and to determine if such absorption was able to enhance resistance to soybean rust. In a first set of experiments with cv. Williams 82, hydroponic plants were supplied or not with Si and inoculated with urediniospores of P. pachyrhizi. Chemical analyses revealed no significant differences in the plants' Si content regardless of the treatment, which translated into no effect on rust incidence. However, in a second set of experiments with different cultivars, plants of Korean cultivar Hikmok sorip absorbed nearly four times more Si than those of Williams 82. At the same time, plants from this cultivar exhibited a near absence of disease symptoms when supplied with Si. This resistance appeared to be the result of hypersensitive (HR) reactions that were triggered when plants were fed with Si. These results support the concept that a plant's innate ability to absorb Si will dictate the benefits conferred by a treatment with Si and provide evidence that Si can protect soybean plants against soybean rust through mediated resistance.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3