First Report of Erysiphe quercicola Causing Powdery Mildew on Ubame Oak in Korea

Author:

Lee H. B.1,Kim C. J.1,Mun H. Y.1,Lee K. -H.2

Affiliation:

1. Division of Applied Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757

2. Division of Forest Resources and Landscape, Architecture College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea. This research was in part supported by the project on survey and excavation of Korean indigenous species of the National Institute of Biological Resources (NIBR) under the Ministry of Environment, and the NRF grant (2010-0012153), Republic of Korea

Abstract

Ubame oak (Quercus phillyraeoides A. Gray) is native to eastern Asia, including China, Korea, and Japan. In 2009 and 2010, a powdery mildew on Q. phillyraeoides growing in clusters and singly was observed in three locations on the campus of Chonnam National University, Gwangju, Korea. White superficial conidia of the powdery mildew fungus occurred on adaxial and abaxial surfaces. However, the white powdery growth was more abundant on the adaxial surface. Leaf symptoms commonly appeared white from May to October. Along with the typical white powdery mildew, spot and/or necrotic symptoms with irregular violet-to-wine red surfaces were also frequently observed on overwintered leaves. A voucher specimen has been deposited in EML (Environmental Microbiology Laboratory) herbarium collection, Chonnam National University (EML-QUP1). Conidia were commonly formed singly but also occurred in chains. Primary conidia were obovoid to ellipsoid, with a rounded apex and subtruncate base. Secondary conidia were generally obovoid to ellipsoid or sometimes cylindrical but dolioform when mature. The size was 30.1 to 43.2 (average 37.7) × 14.1 to 21.1 (average 18.1) μm with length/width ratio of 1.8 to 2.4 (average 2.1). Conidiophores were erect and up to 102.2 μm long. No chasmothecia were found. From extracted genomic DNA, the internal transcribed spacer (ITS) region inclusive of 5.8S rDNA was amplified with ITS1F (5′-CTTGGT CATTTAGAGGAAGT-3′) and LR5F (5′-GCTATCCTGAGGGAAAC-3′) primers (4). Sequence analysis by BLASTN search indicated that EML-QUP1 (GenBank Accession No. HQ328834) was closest to E. quercicola (GenBank Accession No. AB292691) with >99% identity (478 of 480), forming a monophyletic quercicola clade in the resulting phylogenetic analysis. The causal fungus was determined to be Erysiphe quercicola on the basis of morphology and sequence data analysis. Major genera including Cystotheca, Erysiphe, Microsphaera, and Phyllactinia have been reported to cause powdery mildews on Quercus plants. Until now, 22 Erysiphe species including E. abbreviata, E. alphitoides, E. calocladophora, E. gracilis, E. polygoni, and E. quercicola have been reported to cause powdery mildews on Quercus spp. (1). Of these, four Erysiphe species including E. alphitoides, E. gracilis, E. quercicola, and an unidentified Erysiphe sp. have been found on Q. phillyraeoides from Japan (1–3). E. quercicola was reported to occur on five Quercus species: Q. crispula, Q. phillyraeoides, and Q. serrata in Japan, Q. robur in Australia, and Quercus sp. in Australia, Iran, and Thailand (1). To our knowledge, this is the first report of leaf powdery mildew caused by E. quercicola on Q. phillyraeoides in Korea. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved October 7, 2010, from http://nt.ars-grin.gov/fungaldatabases/ , 2010. (2) S. Limkaisang et al. Mycoscience 47:327, 2006. (3) S. Takamatsu et al. Mycol. Res. 111:809, 2007. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3