ToxA–Tsn1 Interaction for Spot Blotch Susceptibility in Indian Wheat: An Example of Inverse Gene-for-Gene Relationship

Author:

Navathe Sudhir1ORCID,Yadav Punam Singh1,Chand Ramesh1ORCID,Mishra Vinod Kumar1,Vasistha Neeraj Kumar2,Meher Prabina Kumar3,Joshi Arun Kumar45,Gupta Pushpendra Kumar2

Affiliation:

1. Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India

2. Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India

3. Division of Statistical Genetics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi, 110012, India

4. International Maize and Wheat Improvement Center (CIMMYT), G-2, B-Block, NASC Complex, DPS Marg, New Delhi, 110012, India

5. Borlaug Institute for South Asia (BISA), G-2, B-Block, NASC Complex, DPS Marg, New Delhi, 110012, India

Abstract

The ToxA–Tsn1 system is an example of an inverse gene-for-gene relationship. The gene ToxA encodes a host-selective toxin (HST) which functions as a necrotrophic effector and is often responsible for the virulence of the pathogen. The genomes of several fungal pathogens (e.g., Pyrenophora tritici-repentis, Parastagonospora nodorum, and Bipolaris sorokiniana) have been shown to carry the ToxA gene. Tsn1 is a sensitivity gene in the host, whose presence generally helps a ToxA-positive pathogen to cause spot blotch in wheat. Cultivars lacking Tsn1 are generally resistant to spot blotch; this resistance is attributed to a number of other known genes which impart resistance in the absence of Tsn1. In the present study, 110 isolates of B. sorokiniana strains, collected from the ME5A and ME4C megaenvironments of India, were screened for the presence of the ToxA gene; 77 (70%) were found to be ToxA positive. Similarly, 220 Indian wheat cultivars were screened for the presence of the Tsn1 gene; 81 (36.8%) were found to be Tsn1 positive. When 20 wheat cultivars (11 with Tsn1 and 9 with tsn1) were inoculated with ToxA-positive isolates, seedlings of only those carrying the Tsn1 allele (not tsn1) developed necrotic spots surrounded by a chlorotic halo. No such distinction between Tsn1 and tsn1 carriers was observed when adult plants were inoculated. This study suggests that the absence of Tsn1 facilitated resistance against spot blotch of wheat. Therefore, the selection of wheat genotypes for the absence of the Tsn1 allele can improve resistance to spot blotch.

Funder

Science for Equity, Empowerment and Development Division

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3