First Report of Asiatic Brown Rot Caused by Monilinia polystroma on Peach in Italy

Author:

Martini C.1,Lantos A.2,Di Francesco A.1,Guidarelli M.1,D'Aquino S.3,Baraldi E.1

Affiliation:

1. Criof, DipSa, University of Bologna, 40057 Cadriano, Bologna, Italy

2. Faculty of Horticultural Science, Department of Plant Pathology, Corvinus University of Budapest, 1118 Budapest, Hungary

3. CNR-ISPA, 07100 Sassari, Italy

Abstract

Monilinia spp. are well-known pathogens causing brown rot of fruit trees in many fruit production areas worldwide. In Italy, three Monilinia species are particularly significant with regard to fruit trees, causing blossom and twig blight and brown rot in fruits: Monilinia laxa (Aderhold and Ruhland) Honey, M. fructicola (Winter) Honey, and M. fructigena (Aderhold and Ruhland). In 2009, a new species, M. polystroma, was distinguished from M. fructigena based on morphological and molecular characteristics in Europe (3). M. polystroma is not known to occur in Italy and to date has been reported from the Czech Republic (1), Hungary (3), Poland (4), Serbia (5), and Switzerland (2). In July 2013, during a survey for fungal postharvest pathogens, stored peaches (Prunus persica (L.) Batsch) belonging to different cultivars showing brown rot symptoms were observed in the Emilia Romagna and Sardinia regions of Italy. Typical decay spots were circular and brown, tending toward black, and 5% of peaches presented a large number of yellowish or buff-colored stromata and firm decayed tissues, the symptoms originated by M. polystroma. The pathogen was isolated on V8 agar (V8A) and culture plates were incubated at 25°C in darkness for 5 days. A conidial suspension was spread on malt extract agar (MEA) and single spores were selected. M. polystroma colonies grown on potato dexstrose agar (PDA) were yellowish in color. Irregular black stromatal crusts occurred on the edges of the colonies after 10 to 12 days of incubation and on the margin was present sporogenous tissue slightly elevated above the colony surface, color buff/pale luteous (1). The conidia were one-celled, ovoid or limoniform, smooth and hyaline, and 12 to 20 × 8 to 12 μm in distilled water when grown on V8A at 22°C. The ribosomal ITS1-5.8S-ITS2 region was PCR-amplified from genomic DNA obtained from mycelium using primers ITS1 and ITS4. A BLAST search in GenBank revealed the highest similarity (99%) to M. polystroma sequences (GenBank Accession No. GU067539). Pathogenicity was confirmed using surface-sterilized mature ‘Red Heaven’ peaches. The fruits were wounded (2 × 2 × 2 mm) twice with a sterile needle and inoculated with 2-mm plugs of 7-day-old mycelia from fungal colony margins. The sample unit was represented by 10 fruits. Control fruits were inoculated with PDA. After 7 days of incubation at 20°C in plastic containers with high humidity, typical symptoms of brown rot developed on both the wounds of all inoculated fruits, while control fruits remained symptomless. By the 14th day, all fruits had rotted and the yellowish exogenous stromata appeared on the surface of infected peaches. The fungus isolated from inoculated fruit exhibited the same morphological and molecular features of the original isolates; the molecular analysis performed using the primers by Petroczy (3) confirmed the result of the PCR with ITS1 and ITS4 primers. To our knowledge, this is the first report of M. polystroma on peach in Italy. This is relevant because the new pathogen could spread into other European countries that are main peach producers (such as Spain), causing economic losses. Bringing it to the attention of the scientific community allows the arrangement of research studies for assessing potential resistances with a significant impact on disease control management. Further studies are necessary to determine geographic distribution, prevalence, and economic importance of this organism in Italy. References: (1) EPPO Reporting Service. 2011/134: First reports of Monilinia polystroma in Hungary and the Czech Republic. No. 6, 2011. (2) M. Hilber-Bodmer et al. Plant Dis. 96:146, 2012. (3) M. Petroczy and L. Palkovics. Eur. J. Plant Pathol. 125:343, 2009. (4) A. Poniatowska et al. Eur. J. Plant Pathol. 135:855, 2013. (5) M. Vasic et al. Plant Dis. 97:145, 2013.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3