Ultrastructure of the Penetration and Infection of Pansy Roots by Thielaviopsis basicola

Author:

Mims Charles W.,Copes Warren E.,Richardson Elizabeth A.

Abstract

Transmission electron microscopy was used to study the penetration and infection of pansy roots by Thielaviopsis basicola. Events observed in 7- to 10-day-old roots produced on moist filter paper differed slightly from those in roots from 4-week-old plants washed free of potting media prior to inoculation. By 3 h postinoculation (PI), epidermal cells of roots produced on filter paper exhibited aggregated cytoplasm and papilla formation in response to germ tube tips. The presence of callose in papillae was demonstrated using immunogold labeling. Papilla formation was not effective in preventing host cell penetration. A slender infection hypha emerged from a germ tube tip and grew through a papilla. Its tip then expanded to form a globose infection vesicle. By 6 h PI, infection hyphae emerged from infection vesicles, and invaded host cells showed signs of necrosis. By 8 h PI, infection hyphae had grown into cortical cells in spite of papilla formation in these cells. By 24 h PI, distinctive intracellular hyphae were present in necrotic cortical cells. In washed roots, most epidermal cells failed to respond to invasion. Hyphae simply grew through these cells and contacted cortical cells that exhibited aggregated cytoplasm and papillae formation. Infection structures similar to those produced in epidermal cells from roots grown on filter paper then formed in cortical cells of washed roots. The fact that T. basicola formed infection structures only in cells that responded to invasion suggests that T. basicola has a more complex relationship with its host than would be expected in a nectrotrophic pathogen. We believe that T. basicola is best described as a necrotrophic hemibiotroph.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3