Quantification of Raindrop Kinetic Energy for Improved Prediction of Splash-Dispersed Pathogens

Author:

Lovell D. J.,Parker S. R.,Van Peteghem P.,Webb D. A.,Welham S. J.

Abstract

An electronic sensor, based on a piezoelectric transducer, was tested in the laboratory using simulated raindrops, and in natural rainfall. Data were also collected for splash dispersal using tracer dyes in laboratory experiments and the Long Ashton splashmeter in field experiments. Droplets impacting on sensor produce sound waves that are detected by an omnidirectional microphone sealed within an acoustic chamber. An electrical charge, proportional to the sound wave, is produced by the microphone and is converted to a categorical scale and then stored to provide an accumulation of impacts over a specified period of time. Calibration of the sensor was done using single-droplet impacts of known mass and impacting velocity. A linear relationship was shown between the categorical scale and the kinetic energy of impacting droplets (adjusted r2 = 0.99). The best relationship fitted between splash dispersal from dye cup, and kinetic energy was a second-order polynomial (adjusted r2 > 0.99). Splash height, recorded by the Long Ashton splashmeter during 41 natural rainfall events, was correlated closely with sensor output (adjusted r2 = 0.87). Our studies indicate that the sensor provides quantitative data which could be incorporated into disease management systems to provide estimates of inoculum dispersal gradients within crop canopies.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3