Environmental and Genetic Factors Influencing Self-Fertility in Phytophthora infestans

Author:

Smart C. D.,Mayton H.,Mizubuti E. S. G.,Willmann M. R.,Fry W. E.

Abstract

Phytophthora infestans is generally regarded as heterothallic-requiring physical proximity of two individuals of different mating type (A1 and A2) for oosporogenesis. Recent reports of limited selfing in young cultures of this oomycete stimulated us to investigate factors contributing to the phenomenon. The ability to produce oospores rapidly (within 2 weeks) in pure, single individual cultures (self-fertility) was tested in 116 individual isolates. The 116 isolates were from geographically diverse locations (16 countries) and were genetically diverse. Mating type and growth medium were the most prominent factors in determining if an isolate would be self-fertile. The majority of A2 isolates (45 of 47 tested) produced oospores when grown on a 50:50 mixture of V8 and rye B medium. In contrast, the majority of A1 isolates (65 of 69 tested) did not produce oospores on this medium. None of the 116 isolates produced oospores when grown on rye B medium (with no V8 juice). Further tests on representative A1 and A2 isolates revealed that oatmeal agar, tomato juice agar, and V8-juice agar all induced the A2 mating type isolate to produce oospores but did not induce the A1 mating type isolate to produce oospores. Calcium carbonate and pH did not alter the self-fertile oospore production in either A1 or A2 mating type isolates. For in vivo tests, the application of fungicide to potato or tomato leaf tissue either before or after inoculation did not stimulate any individual isolate (one A2 and one A1 isolate) to produce oospores in infected tissue. However, in all of the controls for all experiments (in vivo and in vitro), many oospores were produced rapidly if both strains grew in physical proximity.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3