Remote Detection of Rhizomania in Sugar Beets

Author:

Steddom K.,Heidel G.,Jones D.,Rush C. M.

Abstract

As a prelude to remote sensing of rhizomania, hyper-spectral leaf reflectance and multi-spectral canopy reflectance were used to study the physiological differences between healthy sugar beets and beets infested with Beet necrotic yellow vein virus. This study was conducted over time in the presence of declining nitrogen levels. Total leaf nitrogen was significantly lower in symptomatic beets than in healthy beets. Chlorophyll and carotenoid levels were reduced in symptomatic beets. Vegetative indices calculated from leaf spectra showed reductions in chlorophyll and carotenoids in symptomatic beets. Betacyanin levels estimated from leaf spectra were decreased at the end of the 2000 season and not in 2001. The ratio of betacyanins to chlorophyll, estimated from canopy spectra, was increased in symptomatic beets at four of seven sampling dates. Differences in betacyanin and carotenoid levels appeared to be related to disease and not nitrogen content. Vegetative indices calculated from multi-spectral canopy spectra supported results from leaf spectra. Logistic regression models that incorporate vegetative indices and reflectance correctly predicted 88.8% of the observations from leaf spectra and 87.9% of the observations for canopy reflectance into healthy or symptomatic classes. Classification was best in August with a gradual decrease in accuracy until harvest. These results indicate that remote sensing technologies can facilitate detection of rhizomania.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3