Variation in Transmission Efficiency Among Barley yellow dwarf virus-RMV Isolates and Clones of the Normally Inefficient Aphid Vector, Rhopalosiphum padi

Author:

Lucio-Zavaleta E.,Smith D. M.,Gray S. M.

Abstract

The RMV strain of Barley yellow dwarf virus (BYDV-RMV) is an unassigned member of the Luteoviridae that causes barley yellow dwarf in various cereal crops. The virus is most efficiently vectored by the aphid Rhopalosiphum maidis, but can also be vectored with varying efficiency by R. padi and Schizaphis graminum. Field collections of alate aphids migrating into the emerging winter wheat crop in the fall of 1994 in central New York identified a high proportion of R. padi transmitting BYDV-RMV. This prompted a comparison of the BYDV-RMV isolates and the R. padi populations found in the field with type virus and aphid species maintained in the laboratory. A majority of the field isolates of BYDV-RMV were similar to each other and to the type BYDV-RMV isolate in disease severity on oat and in transmission by the laboratory-maintained population of R. maidis and a field-collected population of R. maidis. However, several field populations of R. padi differed in their ability to transmit the various BYDV-RMV isolates. The transmission efficiency of the R. padi clones was increased if acquisition and inoculation feeding periods were allowed at higher temperatures. In addition, the transmission efficiency of BYDV-RMV was significantly influenced by the aphid that inoculated the virus source tissue. In general, BYDV-RMV transmission by R. padi was higher when R. padi was the aphid that inoculated the source tissue than when R. maidis was the inoculating aphid. The magnitude of the change varied among virus isolates and R. padi clones. These results indicate that, under certain environmental conditions, R. padi can play a significant role in the epidemiology of BYDV-RMV. This may be especially significant in regions where corn is a major source of virus and of aphids that can carry virus into a fall-planted wheat crop.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3