Histopathological Study of Barley Cultivars Resistant and Susceptible to Rhynchosporium secalis

Author:

Carisse K. Xi,Burnett P. A.,Tewari J. P.,Chen M. H.,Turkington T. K.,Helm J. H.

Abstract

Differences in the penetration process by Rhynchosporium secalis were compared in resistant and susceptible barley cultivars at the seedling stage. Percent penetration and percent host cell wall alteration (HCWA) differed significantly among cultivars and isolates as revealed by light microscopy. Based on these two variables, the cultivars were statistically separated into two groups that corresponded to their disease reactions. The resistant cultivars, Johnston and CDC Guardian, showed 81.2 to 99.4% HCWA and 0.1 to 20.1% penetration at encounter sites, whereas the susceptible cultivars, Harrington, Argyle, and Manley, had 30.1 to 78.3% HCWA and 31.8 to 81.8% penetration. In the current study, cv. Leduc, which is susceptible at the seedling stage and resistant at the adult stage, showed the same percent HCWA and penetration as did susceptible cultivars. A significant negative correlation (P < 0.01) was found between percent penetration and percent HCWA for cultivars inoculated with two isolates of the pathogen. Isolate 1 was less virulent than isolate 2 with respect to percent penetration and induced significantly fewer HCWA. Scanning electron microscopy showed various shapes of fungal appressoria but no apparent difference in host reaction between resistant and susceptible cultivars. Transmission electron microscopy revealed interactions between the host and pathogen at various stages of penetration. The resistant cv. Johnston responded by producing appositions, as evidenced by a layer of compact osmiophilic material deposited on the inner side of the cell wall. Infection pegs produced by conidia were unable to penetrate the cuticle where an apposition had formed inside. When penetration occurred in the susceptible cv. Argyle, cytoplasmic aggregates and separation of the plasmalemma were visible from the host cell wall, but the layer of compact osmiophilic material was not always present. Data based on light microscopic observations suggested that HCWA may be one of the mechanisms responsible for resistance that is characterized as penetration prevention rather than as a slow rate of mycelial growth after successful penetration. HCWA occurred in response to attempted cuticle penetration, suggesting that HCWA may produce chemical barriers that help to prevent penetration.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3