Integrated Disease Management of Leaf Spot and Spotted Wilt of Peanut

Author:

Cantonwine E. G.1,Culbreath A. K.2,Stevenson K. L.3,Kemerait R. C.4,Brenneman T. B.5,Smith N. B.6,Mullinix B. G.7

Affiliation:

1. Former Graduate Student

2. Professor

3. Associate Professor

4. Assistant Professor

5. Professor, Department of Plant Pathology

6. Assistant Professor, Department of Agricultural and Applied Economics

7. Research Statistician, Experimental Statistics Unit, The University of Georgia Coastal Plain Experiment Station, Tifton 31793-0748

Abstract

Field experiments were carried out to evaluate the effects of integrated management of early leaf spot, caused by Cercospora arachidicola, and spotted wilt, caused by Tomato spotted wilt virus (TSWV), on peanut (Arachis hypogaea) using host resistance, two tillage systems, and varying fungicide programs. Effects on pod yield and economic return were assessed. Genotypes C-11-2-39 and Tifrunner demonstrated the best field resistance to TSWV, whereas cvs. DP-1 and GA-01R and line C-28-305 were among the genotypes with the best leaf spot resistance. Epidemics of both diseases were comparable or suppressed in strip-tilled plots compared with conventionally tilled plots. Leaf spot intensity decreased with increased fungicide applications, but to a lesser degree with use of resistance and strip tillage. Yields and net returns were similar between tillage treatments in 2002 and lower in strip tillage in 2003. Genotypes with the greatest yields and returns were C-11-2-39, C-99R, and GA-01R. Returns were comparable among the four-, five-, and seven-spray programs in both years, despite differences in yield. The standard production system, Georgia Green in conventional tillage with seven sprays, resulted in lower returns than half the integrated systems tested in 2002, but had comparable or higher returns than nearly all systems in 2003. When significant, yields and returns were correlated with spotted wilt intensity to a greater degree than leaf spot intensity.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3