Colonization of Vitis spp. Wood by sGFP-Transformed Phaeomoniella chlamydospora, a Tracheomycotic Fungus Involved in Esca Disease

Author:

Landi Lucia,Murolo Sergio,Romanazzi Gianfranco

Abstract

To evaluate wood colonization and interactions with Vitis spp. of Phaeomoniella chlamydospora, a fungal agent involved in Esca disease, isolate CBS 229.95 was transformed using a pCT74 construct which contained the genetic markers for synthetic green fluorescent protein (sGFP) and hygromycin B phosphotransferase. Nine stable P. chlamydospora fungal transformants (Pch-sGFP lines) were obtained using polyethylene-glycol-mediated transformation of protoplasts. These were characterized for sgfp and hygromycin B phosphotransferase (hph) genome insertions and for sGFP fluorescence emission, using quantitative polymerase chain reaction and fluorimetric systems, respectively. No correlation was observed between sgfp copy number genome insertion and sGFP fluorescence expression. Cuttings of Vitis vinifera ‘Montepulciano’, ‘Verdicchio’, ‘Sangiovese’, ‘Biancame’, and ‘Cabernet Sauvignon’; and the grapevine rootstocks ‘Kober 5BB’, ‘SO4’, ‘420A’, ‘1103P’, and V. rupestris were inoculated by immersion in a conidial suspension of the selected fungal Pch-sGFP71 line and incubated at 4 ± 1 and 25 ± 1°C. Wood colonization was estimated through epifluorescence microscopy and was affected by incubation temperature. After 6 months at 4 ± 1°C, the fungal growth was completely inhibited. At 25 ± 1°C, the highest extent of wood colonization was recorded in Montepulciano and Verdicchio, with the lowest in the rootstocks SO4 and V. rupestris. The expression of the Pch-sGFP71 transformed line was localized in the xylem area, primarily around the vessels. The use of sGFP-transformed P. chlamydospora helped to clarify different aspects associated with the location of this pathogen in grapevine tissue, before disease symptom expression.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3