Genomewide Transcriptome Profiles Reveal How Bacillus subtilis Lipopeptides Inhibit Microsclerotia Formation in Verticillium dahliae

Author:

Yu Dimei1,Fang Yulin1,Tang Chen1,Klosterman Steven J.2,Tian Chengming1,Wang Yonglin1ORCID

Affiliation:

1. Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China; and

2. United States Department of Agriculture–Agricultural Research Service, Salinas, CA, U.S.A.

Abstract

Verticillium dahliae is a soilborne fungus and the primary causal agent of vascular wilt diseases worldwide. The fungus produces melanized microsclerotia that are crucially important for the survival and spread of V. dahliae. There are no fungicides available that are both effective and environmentally friendly to suppress the fungus. Previously, Bacillus subtilis C232 was isolated from soil and was demonstrated to suppress microsclerotia formation in V. dahliae. In this study, liquid chromatography coupled with mass spectrometry revealed that the antifungal substance is actually a mixture of lipopeptides. Exposure of V. dahliae to these lipopeptides resulted in hyphal swelling, cell lysis, and downregulation of melanin-related genes. RNA sequencing analyses of the lipopeptide-suppressed transcriptome during microsclerotial development revealed that 5,974 genes (2,131 upregulated and 3,843 downregulated) were differentially expressed versus nonsuppressive conditions. Furthermore, gene ontology enrichment analyses revealed that genes involved in response to stress, cellular metabolic processes, and translation were significantly enriched. Additionally, the lipopeptides inhibited expression of genes associated with secondary metabolism, protein catabolism, and the high-osmolarity glycerol response signaling pathway. Together, these findings provide evidence for the mechanism by which B. subtilis lipopeptides suppress microsclerotia formation. The transcriptomic insight garnered here may facilitate the development of biological agents to combat Verticillium wilt.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Undergraduate Research Training of Beijing Forestry University

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3