CaCBL1 Acts as a Positive Regulator in Pepper Response to Ralstonia solanacearum

Author:

Shen Lei123,Yang Sheng123,Yang Feng123,Guan Deyi123,He Shuilin123ORCID

Affiliation:

1. Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China

2. National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China

3. Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China

Abstract

Bacterial wilt caused by Ralstonia solanacearum is an important disease of pepper (Capsicum annuum), an economically important solanaceous vegetable worldwide, in particular, under high temperature (HT) conditions. However, the molecular mechanism underlying pepper immunity against bacterial wilt remains poorly understood. Herein, CaCBL1, a putative calcineurin B-like protein, was functionally characterized in the pepper response to R. solanacearum inoculation (RSI) under HT (RSI/HT). CaCBL1 was significantly upregulated by RSI at room temperature (RSI/RT), HT, or RSI/HT. CaCBL1-GFP fused protein targeted to whole epidermal cells of Nicotiana benthamiana when transiently overexpressed. CaCBL1 silencing by virus-induced gene silencing significantly enhanced pepper susceptibility to RSI under RT or HT, while its transient overexpression triggered hypersensitive response mimic cell death and upregulation of immunity-associated marker genes, including CabZIP63, CaWRKY40, and CaCDPK15, the positive regulators in the pepper response to RSI or HT found in our previous studies. In addition, by chromatin immunoprecipitation PCR and electrophoretic mobility shift assay, CaCBL1 was found to be directly targeted by CaWRKY40, although not by CaWRKY27 or CaWRKY58, via the W-box-2 within its promoter, and its transcription was found to be downregulated by silencing of CaWRKY40 while it was enhanced by its transient overexpression. These results suggest that CaCBL1 acts as a positive regulator in pepper immunity against R. solanacearum infection, constituting a positive feedback loop with CaWRKY40.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of the Graduate School of Fujian Agriculture and Forestry University

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3