First report of strains within the Pythium spinosum species complex causing carrot cavity spot in California

Author:

Chaudhry Misbah J.1,Sidhu Jaspreet K.2,Nuñez Joe J2,Gillard Jeroen T. F.1,Francis Isolde M.1

Affiliation:

1. California State University - Bakersfield, 14662, Biology, Bakersfield, California, United States;

2. University of California Cooperative Extension, Kern County, Bakersfield, California, United States;

Abstract

Carrots (Daucus carota L. subsp. sativus (Hoffm.)) with typical symptoms of cavity spot, i.e., sunken, round to elliptical lesions of 2-5 mm long (Hiltunen and White 2002), were collected from two locations in California, Bakersfield and Riverside, in January and July 2019, respectively. Carrots were rinsed in tap water, 4-mm2 lesion fragments were pressed into selective corn meal agar (CMA-PARP; Schrandt et al. 1994) and incubated at 23ºC in the dark for four days. Identification of pure cultures was performed via amplification and sequence analysis of two genomic regions, the Internal Transcribed Spacer 1-5.8S-ITS2 (ITS) region and the cytochrome C oxidase subunit 1 (COI) gene, using the universal primers UN-UP18S42/UN-LO28S576B (Schroeder et al. 2006) and OomCOXI-Levup/OomCOXI-Levlo (Robideau et al. 2011), respectively. Via BLAST, two isolates from organically grown carrots in Bakersfield (MCIF19) and Riverside (JSCS19), with identical ITS sequences (GenBank Acc. Nos. MZ799354 and MZ799355, respectively), showed 99.61% similarity (1021/1025 bp) to that of Pythium spinosum (AY598701.2). Yet, the COI of MCIF19 (MZ803207) showed 98.72% similarity (692/701 bp) to that of Pythium paroecandrum (GU071818.1), while the COI of JSCS19 (MZ803208) was identical (701/701 bp) to that of Pythium kunmingense (GU071820.1), a rarely isolated species considered within the species complex of P. spinosum (Robideau et al. 2011). According to these results, the isolates were identified as belonging to the P. spinosum species complex, part of Pythium Clade F (Lévesque and De Cock 2004; Robideau et al. 2011). Further research is needed to clarify the exact taxonomic status of both isolates. Koch’s postulates were completed using two different assays. Each assay was done twice and with carrots of the cultivar Maverick. Surface-sterilized, freshly harvested, mature carrots, in a plastic box lined with moistened sterile paper towels, were inoculated each with four CMA plugs (5-mm diameter) with actively growing mycelium of each isolate. CMA plugs, non-inoculated or colonized by a known pathogenic P. violae strain, were used as the negative and positive control, respectively. Boxes were closed to maintain humidity and incubated at 23ºC in the dark. Lesions similar to the ones caused by P. violae were observed at day 3 for all plugs of both isolates. No symptoms were observed for the negative control, even after extending the incubation to 7 days. In a more natural assay, four non-treated carrot seeds were planted in tree seedling pots (25 x 6.5 cm) containing sterilized 50/50 peat moss/sand combined with 15-ml V8 broth (Schrandt et al. 1994) with densely grown mycelium. The same inoculation treatments were used as for the carrot disk assay. Plants (one plant/pot, four plants/treatment) were maintained at 23ºC under a 16 h photoperiod with daily watering (20 ml). At 14 weeks, the carrots inoculated with P. violae and the two test isolates showed cavity spot lesions while no symptoms were observed on carrots growing in non-inoculated medium. For both assays, pathogens were re-isolated from rinsed symptomatic tissue and their identity was confirmed using the molecular analysis described above. No oomycetes were recovered from the non-inoculated carrots. Although several Pythium species have been associated with cavity spot before, this is, to our knowledge, the first report of strains within the P. spinosum species complex causing carrot cavity spot in California and elsewhere. Funding: This research was made possible by the California Fresh Carrot Advisory Board (FRA-21). References: Hiltunen, L.H., and White, J. G. 2002. Ann. Appl. Biol. 141:201. Lévesque, C. A., and De Cock, W. A. M. 2004. Mycol. Res. 108:1363. Robideau, G.P., et al. 2011. Mol. Ecol. Resour. 11:1002. Schrandt K. K., et al. 1994. Plant Dis. 78:335. Schroeder, K.L., et al. 2006. Phytopathology 96:637. Supplementary material: Supplementary figure S1 Supplementary figure S2

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3