Pathogen Identification and Factors Influencing Infection Frequency and Severity of Fungal Rust in Four Native Grasses in Hulunber Grassland, China

Author:

Zhang Yawen12ORCID,Xin Xiaoping3,Matthew Cory4,Christensen Michael J.5,Nan Zhibiao1

Affiliation:

1. State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, P.R. China

2. School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China

3. National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Science, Beijing 10081, P.R. China

4. School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand

5. AgResearch, Grasslands Research Centre, Private Bag 11-008, Palmerston North 4442, New Zealand (Retired)

Abstract

A serious rust infection present in 2014 and 2015 on the dominant grass species (Leymus chinensis) in the Hulunber grassland of Inner Mongolia, China, and also present on three other grass species (Agropyron cristatum [wheat grass], Bromus inermis, and Festuca ovina) was investigated. Field surveys, laboratory determination of morphological characteristics, pathogenicity tests, and molecular identification methods were integrated to identify two rust-causing pathogens on L. chinensis. It was found that Puccinia elymi was the major pathogen of L. chinensis, and also infected A. cristatum and F. ovina. This is the first report of P. elymi on A. cristatum in China. P. striiformis caused stripe rust on L. chinensis and B. inermis. The incidence and severity of rust infection increased through the growing season, presumably from asexual spread by urediniospores, and was higher on grass species phylogenetically more closely related to common crop hosts of the pathogens. High host grass density and presence of a potential alternate host for P. elymi, Thalictrum squarrosum, were two further factors promoting rust incidence. These results provide insight into ecological factors linked to the rust epidemic and provide a theoretical basis for the formulation of control strategies.

Funder

National Public Welfare Industry of Agricultural Science and Technology Special Projects

Fundamental Research Funds for the Central Universities

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3