Identification of Genes Underlying the Resistance to Melampsora larici-populina in an R Gene Supercluster of the Populus deltoides Genome

Author:

Wei Suyun12ORCID,Wu Huaitong1,Li Xiaoping1,Chen Yingnan1,Yang Yonghua3ORCID,Dai Meili1,Yin Tongming1

Affiliation:

1. The Key Laboratory for Poplar Breeding and Germplasm Improvement, The Southern Modern Forestry Collaborative Innovation Center, College of Forestry, Nanjing Forestry University, Nanjing 210037, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

3. College of Life Sciences, Nanjing University, Nanjing 210093, China

Abstract

Identification of the particular genes in an R genes supercluster underlying resistance to the rust fungus Melampsora larici-populina in poplar genome remains challenging. Based on the de novo assembly of the Populus deltoides genome, all of the detected major genetic loci conferring resistance to M. larici-populina were confined to a 3.5-Mb region on chromosome 19. The transcriptomes of the resistant and susceptible genotypes were sequenced for a timespan from 0 to 168 hours postinoculation. By mapping the differentially expressed genes to the target genomic region, we identified two constitutive expression R genes and one inducible expression R gene that might confer resistance to M. larici-populina. Nucleotide variations were predicted based on the reconstructed haplotypes for each allele of the candidate genes. We also confirmed that salicylic acid was the phytohormone mediating signal transduction pathways, and PR-1 was identified as a key gene inhibiting rust reproduction. Finally, quantitative reverse transcription PCR assay revealed consistent expressions with the RNA-sequencing data for the detected key genes. This study presents an efficient approach for the identification of particular genes underlying phenotype of interest by the combination of genetic mapping, transcriptome profiling, and candidate gene sequences dissection. The identified key genes would be useful for host resistance diagnosis and for molecular breeding of elite poplar cultivars exhibiting resistance to M. larici-populina infection. The detected R genes are also valuable for testing whether the combination of individual R genes can induce durable quantitative resistance.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3