Iron Sulfate and Phosphorous Acid Affect Turfgrass Surface pH and Microdochium Patch Severity on Annual Bluegrass

Author:

Mattox Clint M.1ORCID,Dumelle Michael J.2,McDonald Brian W.1,Gould Micah A.3,Olsen Conner J.1,Braithwaite Emily T.1,Kowalewski Alec R.1

Affiliation:

1. Department of Horticulture, Oregon State University, Corvallis, OR 97331

2. Department of Statistics, Oregon State University, Corvallis, OR 97331

3. Barenbrug USA, Tangent, OR 97389

Abstract

Microdochium patch is a turfgrass disease caused by the fungal pathogen Microdochium nivale. Iron sulfate heptahydrate (FeSO4•7H2O) and phosphorous acid (H3PO3) applications have previously been shown to suppress Microdochium patch on annual bluegrass putting greens when applied alone, although either disease suppression was inadequate or turfgrass quality was reduced from the applications. A field experiment was conducted in Corvallis, Oregon, U.S.A., to evaluate the combined effects of FeSO4•7H2O and H3PO3 on Microdochium patch suppression and annual bluegrass quality. The results of this work suggest that the addition of 3.7 kg H3PO3 ha−1 with 24 or 49 kg FeSO4•7H2O ha−1 applied every 2 weeks improved the suppression of Microdochium patch without substantially compromising turf quality, which occurred when 98 kg FeSO4•7H2O ha−1 was applied with or without H3PO3. Spray suspensions reduced the pH of the water carrier, therefore two additional growth chamber experiments were conducted to better understand the effects of these treatments on leaf surface pH and Microdochium patch suppression. On the application date in the first growth chamber experiment, at least a 19% leaf surface pH reduction was observed compared with the well water control when FeSO4•7H2O was applied alone. When 3.7 kg H3PO3 ha−1 was combined with FeSO4•7H2O, regardless of the rate, the leaf surface pH was reduced by at least 34%. The second growth chamber experiment determined that sulfuric acid (H2SO4) at a 0.5% spray solution rate was always in the group that produced the lowest annual bluegrass leaf surface pH, but did not suppress Microdochium patch. Together, these results suggest that while treatments decrease leaf surface pH, this decrease in pH is not responsible for the suppression of Microdochium patch.

Funder

United States Golf Association

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3