Identification of a Recessive Gene PmQ Conferring Resistance to Powdery Mildew in Wheat Landrace Qingxinmai Using BSR-Seq Analysis

Author:

Li Yahui1,Shi Xiaohan1,Hu Jinghuang1,Wu Peipei1,Qiu Dan1,Qu Yunfeng1,Xie Jingzhong2,Wu Qiuhong2,Zhang Hongjun1,Yang Li1,Liu Hongwei1,Zhou Yang1,Liu Zhiyong2,Li Hongjie1ORCID

Affiliation:

1. The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), a biotrophic fungal species. It is very important to mine new powdery mildew (Pm) resistance genes for developing resistant wheat cultivars to reduce the deleterious effects of the disease. This study was carried out to characterize the Pm gene in Qingxinmai, a winter wheat landrace from Xinjiang, China. Qingxinmai is resistant to many Bgt isolates collected from different wheat fields in China. F1, F2, and F2:3 generations of the cross between Qingxinmai and powdery mildew susceptible line 041133 were developed. It was confirmed that a single recessive gene, PmQ, conferred the seedling resistance to a Bgt isolate in Qingxinmai. Bulked segregant analysis-RNA-Seq (BSR-Seq) was performed on the bulked homozygous resistant and susceptible F2:3 families, which detected 57 single nucleotide polymorphism (SNP) variants that were enriched in a 40 Mb genomic interval on chromosome arm 2BL. Based on the flanking sequences of the candidate SNPs extracted from the Chinese Spring reference genome, 485 simple sequence repeat (SSR) markers were designed. Six polymorphic SSR markers, together with nine markers that were anchored on chromosome arm 2BL, were used to construct a genetic linkage map for PmQ. This gene was placed in a 1.4 cM genetic interval between markers Xicsq405 and WGGBH913 corresponding to 4.9 Mb physical region in the Chinese Spring reference genome. PmQ differed from most of the other Pm genes identified on chromosome arm 2BL based on its position and/or origin. However, this gene and Pm63 from an Iranian common wheat landrace were located in a similar genomic region, so they may be allelic.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3