Soilborne Phytophthora and Pythium Diversity From Rhododendron in Propagation, Container, and Field Production Systems of the Pacific Northwest

Author:

Weiland Jerry E.1ORCID,Scagel Carolyn. F.1,Grünwald Niklaus J.1ORCID,Davis E. Anne1,Beck Bryan R.1,Foster Zachary S. L.2,Fieland Valerie J.2

Affiliation:

1. Horticultural Crops Research Laboratory, U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97330

2. Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331

Abstract

Rhododendron root rot is a severe disease that causes significant mortality in rhododendrons. Information is needed about the incidence and identity of soilborne Phytophthora and Pythium species causing root rot in Pacific Northwest nurseries in order to better understand the disease etiology and to optimize disease control strategies. The last survey focusing solely on soilborne oomycete pathogens in rhododendron production was conducted in 1974. Since then, advances in pathogen identification have occurred, new species may have been introduced, pathogen communities may have shifted, and little is known about Pythium species affecting this crop. Therefore, a survey of root-infecting Phytophthora and Pythium species was conducted at seven nurseries from 2013 to 2017 to (i) document the incidence of root rot damage at each nursery and stage of production, (ii) identify soilborne oomycetes infecting rhododendron, and (iii) determine whether there are differences in pathogen diversity among nurseries and production systems. Rhododendrons from propagation, container, and field systems were sampled and Phytophthora and Pythium species were isolated from the roots and collar region. Root rot was rarely evident in propagation systems, which were dominated by Pythium species. However, severe root rot was much more common in container and field systems where the genus Phytophthora was also more prevalent, suggesting that Phytophthora species are the primary cause of severe root rot and that most contamination by these pathogens comes in after the propagation stage. In total, 20 Pythium species and 11 Phytophthora species were identified. Pythium cryptoirregulare, Pythium aff. macrosporum, Phytophthora plurivora, and Phytophthora cinnamomi were the most frequently isolated species and the results showed that Phytophthora plurivora has become much more common than in the past. Phytophthora diversity was also greater in field systems than in propagation or container systems. Risks for Phytophthora contamination were commonly observed during the survey and included placement of potting media in direct contact with field soil, the presence of dead plants that could serve as continuous sources of inoculum, and the presence of excess water as a result of poor drainage, overirrigation, or malfunctioning irrigation equipment. In the past, research on disease development and root rot disease control in rhododendron focused almost exclusively on Phytophthora cinnamomi. More research is needed on both of these topics for the other root-infecting species identified in this survey.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3