Affiliation:
1. Department of Plant Science and Landscape Architecture, University of Maryland, College Park 20742
2. United States Department of Agriculture–Agricultural Research Service, Beltsville, MD 20705
3. Department of Plant Science and Landscape Architecture, University of Maryland
4. Department of Plant Science and Landscape Architecture, University of Maryland, and University of Delaware, Georgetown 19947
Abstract
Fall-planted Vicia villosa or Trifolium incarnatum cover crops, incorporated in spring as a green manure, can suppress Fusarium wilt (Fusarium oxysporum f. sp. niveum) of watermelon. During cover crop growth, termination, and incorporation into the soil, many factors such as arbuscular mycorrhizae colonization, leachate, and soil respiration differ. How these cover-crop-associated factors affect Fusarium wilt suppression is not fully understood. Experiments were conducted to evaluate how leachate, soil respiration, and other green-manure-associated changes affected Fusarium wilt suppression, and to evaluate the efficacy of the biocontrol product Actinovate AG (Streptomyces lydicus WYEC 108). General and specific suppression was examined in the field by assessing the effects of cover crop green manures (V. villosa, T. incarnatum, Secale cereale, and Brassica juncea) on soil respiration, presence of F. oxysporum spp., and arbuscular mycorrhizal colonization of watermelon. Cover crop treatments V. villosa, T. incarnatum, and S. cereale and no cover crop were evaluated both alone and in combination with Actinovate AG in the greenhouse. Additionally, in vitro experiments were conducted to measure the effects of cover crop leachate on the mycelial growth rates of F. oxysporum f. sp. niveum race 1 and Trichoderma harzianum. Soil microbial respiration was significantly elevated in V. villosa and Trifolium incarnatum treatments both preceding and following green manure incorporation, and was significantly negatively correlated with Fusarium wilt, suggesting that microbial activity was higher under the legumes, indicative of general suppression. Parallel to this, in vitro growth rates of F. oxysporum f. sp. niveum and Trichoderma harzianum on V. villosa leachate amended media were 66 and 213% greater, respectively, than on nonamended plates. The F. oxysporum spp. population (based on CFU and not differentiated into formae specialis or races) significantly increased in V. villosa-amended field plots. Additionally, the percentage of watermelon roots colonized by arbuscular mycorrhizae following V. villosa and Trifolium incarnatum green manures was significantly higher than in watermelon following bare ground (58 and 44% higher, respectively). In greenhouse trials where cover crops were amended to soil, Actinovate AG did not consistently reduce Fusarium wilt. Both general and specific disease suppression play a role in reducing Fusarium wilt on watermelon.
Subject
Plant Science,Agronomy and Crop Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献