Factors Associated with Leguminous Green Manure Incorporation and Fusarium Wilt Suppression in Watermelon

Author:

Himmelstein J.1,Maul J. E.2,Balci Y.3,Everts K. L.4

Affiliation:

1. Department of Plant Science and Landscape Architecture, University of Maryland, College Park 20742

2. United States Department of Agriculture–Agricultural Research Service, Beltsville, MD 20705

3. Department of Plant Science and Landscape Architecture, University of Maryland

4. Department of Plant Science and Landscape Architecture, University of Maryland, and University of Delaware, Georgetown 19947

Abstract

Fall-planted Vicia villosa or Trifolium incarnatum cover crops, incorporated in spring as a green manure, can suppress Fusarium wilt (Fusarium oxysporum f. sp. niveum) of watermelon. During cover crop growth, termination, and incorporation into the soil, many factors such as arbuscular mycorrhizae colonization, leachate, and soil respiration differ. How these cover-crop-associated factors affect Fusarium wilt suppression is not fully understood. Experiments were conducted to evaluate how leachate, soil respiration, and other green-manure-associated changes affected Fusarium wilt suppression, and to evaluate the efficacy of the biocontrol product Actinovate AG (Streptomyces lydicus WYEC 108). General and specific suppression was examined in the field by assessing the effects of cover crop green manures (V. villosa, T. incarnatum, Secale cereale, and Brassica juncea) on soil respiration, presence of F. oxysporum spp., and arbuscular mycorrhizal colonization of watermelon. Cover crop treatments V. villosa, T. incarnatum, and S. cereale and no cover crop were evaluated both alone and in combination with Actinovate AG in the greenhouse. Additionally, in vitro experiments were conducted to measure the effects of cover crop leachate on the mycelial growth rates of F. oxysporum f. sp. niveum race 1 and Trichoderma harzianum. Soil microbial respiration was significantly elevated in V. villosa and Trifolium incarnatum treatments both preceding and following green manure incorporation, and was significantly negatively correlated with Fusarium wilt, suggesting that microbial activity was higher under the legumes, indicative of general suppression. Parallel to this, in vitro growth rates of F. oxysporum f. sp. niveum and Trichoderma harzianum on V. villosa leachate amended media were 66 and 213% greater, respectively, than on nonamended plates. The F. oxysporum spp. population (based on CFU and not differentiated into formae specialis or races) significantly increased in V. villosa-amended field plots. Additionally, the percentage of watermelon roots colonized by arbuscular mycorrhizae following V. villosa and Trifolium incarnatum green manures was significantly higher than in watermelon following bare ground (58 and 44% higher, respectively). In greenhouse trials where cover crops were amended to soil, Actinovate AG did not consistently reduce Fusarium wilt. Both general and specific disease suppression play a role in reducing Fusarium wilt on watermelon.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3