First report of leaf spot caused by Colletotrichum fructicola on Dalbergia hupeana in China

Author:

Zhou Yang1,Ye Rou2,Ying Qin3,Zhang Yang4,Zhang Linping5

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration for the Protection and Restoration of Forest Ecosystem in Poyang Lake Basin, zhimin road 1101, Nanchang, Jiangxi, China, 330045, ;

2. Jiangxi Agricultural University, 91595, Key Laboratory of National Forestry and Grassland Administration for the Protection and Restoration of Forest Ecosystem in Poyang Lake Basin, Nanchang, Jiangxi, China;

3. Jiangxi Agricultural University, 91595, Key Laboratory of National Forestry and Grassland Administration for the Protection and Restoration of Forest Ecosystem in Poyang Lake Basin, Nanchang, Jiangxi, China, ;

4. Jiangxi Agricultural University, 91595, forest of college, No. 1101, Zhiminda Road, Nanchang, Jiangxi, China, 330045, , ;

5. Jiangxi Agricultural University, 91595, Key Laboratory of National Forestry and Grassland Administration for the Protection and Restoration of Forest Ecosystem in Poyang Lake Basin, Nanchang, China, ;

Abstract

Dalbergia hupeana is a kind of wood and medicinal tree widely distributed in southern China. Since 2019, a leaf spot disease was observed on the leaves of D. hupeana in Gangxia village, Luoting town in Jiangxi Province, China (28°52′53″N, 115°44′58″E). The disease incidence was estimated to be above 50%. The symptoms began as small spots that gradually expanded, developing a brown central and dark brown to black margin. The spots ranged from 4 to 6 mm in diameter. Leaf pieces (5 × 5 mm) from lesion margins were surface sterilized in 70% ethanol for 30 s followed by 2% NaOCl for 1 min and then rinsed three times with sterile water. Tissues were placed on potato dextrose agar (PDA) and incubated at 25°C. Pure cultures were obtained by monosporic isolation. Fifteen strains with similar morphological characterizations were isolated, and three representative isolates (JHT-1, JHT-2, and JHT-3) were chosen and used for further study. Colonies on PDA of three isolates were grayish-green with white edges and dark green on the reverse side. Conidia were transparent, cylindrical with rounded ends, and measured 3.6-5.3 µm × 9.5-15.2 µm (3.7 ± 0.2 × 13.6 ± 1.1 µm, n = 100). Appressoria were dark brown, globose or subcylindrical, and ranged from 6.2-9.2 µm× 5.1-6.8 µm (7.9 ± 0.4 × 5.9 ± 0.3 µm, n=100). The morphological characteristics of the three strains were consistent with the description of species in the Colletotrichum gloeosporioides complex (Weir et al. 2012). The internal transcribed spacer (ITS) regions, actin (ACT), calmodulin (CAL), chitin synthase (CHS-1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin 2 (TUB2) were amplified from genomic DNA for the three isolates using primers ITS1/ITS4, ACT-512F/ACT-783R, CL1/CL2, CHS-79F/CHS-345R, GDF/GDR and T1/Bt2b (Weir et al. 2012), respectively. The sequences were deposited in GenBank (Accession Nos. MZ482016 - MZ482018 for ITS; MZ463636 - MZ463638 for ACT; MZ463648- MZ463650 for CAL; MZ463639 - MZ463641 for CHS-1; MZ463642 - MZ463644 for GAPDH; MZ463645 - MZ463647 for TUB2). A neighbor-joining phylogenetic tree was constructed with MEGA 7.0 using the concatenation of multiple sequences (ITS, ACT, GAPDH, TUB2, CHS-1, CAL) (Kumar et al. 2016). According to the phylogenetic tree, three isolates fall within the Colletotrichum fructicola clade (boot support 99%). Based on morphological characteristics and phylogenetic analysis, three isolates were identified as C. fructicola. The pathogenicity of three isolates was conducted on two-yr-old seedlings (30 cm tall) of D. hupeana. Healthy leaves were wounded with a sterile needle and then inoculated with 10 μL spore suspension (106 conidia per mL). Controls were treated with sterile water. All plants were covered with transparent plastic bags and incubated in a greenhouse at 28°C with a 12 h photoperiod (relative humidity > 80%). Within five days, the inoculated leaves developed lesions similar to those observed in the field, whereas controls were asymptomatic. The experiments repeated three times showed similar results. The infection rate was 100%. C. fructicola was re-isolated from the lesions, whereas no fungus was isolated from control leaves. C. fructicola can cause leaf diseases in a variety of hosts, including Aesculus chinensis (Sun et al. 2020), Peucedanum praeruptorum (Ma et al. 2020), and Mandevilla × amabilis (Sun et al. 2020). C. brevisporum and C. gigasporum were also reported to infect Dalbergia odorifera (Chen et al. 2021; Wan et al. 2018). However, This is the first report of C. fructicola associated with leaf spot disease on D. hupeana in China. These results will help to develop effective strategies for appropriately managing this newly emerging disease.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3