Systemic Colonization and Expression of Disease Symptoms on Bittersweet Nightshade (Solanum dulcamara) Infected with a GFP-Tagged Dickeya solani IPO2222 (IPO2254)

Author:

Fikowicz-Krosko Jakub1,Czajkowski Robert1ORCID

Affiliation:

1. University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Department of Biotechnology, Antoniego Abrahama 58, 80-307, Gdansk, Poland

Abstract

Colonization of Solanum dulcamara (bittersweet nightshade) plants by a GFP-tagged Dickeya solani type strain IPO2222 (IPO2254) was investigated by selective plating and epifluorescence stereomicroscopy (ESM), using in vitro plants and plants grown in compost soil. Replicated experiments were carried out in a growth chamber and the progress of infection and disease symptoms on tissue of the cultured plants, following leaf- and stem-base inoculations with bacteria, was evaluated. Microscopy observations were confirmed by spread-plating dilutions of plant extracts onto agar medium directly after the harvest. In experiments where the stem base of in vitro plants inoculated with a range of inocula of D. solani (104 to 108 colony forming units [cfu] ml−1) was examined at 14 days post infection (dpi), blackleg-like symptoms developed in more than 80% plants together with a reduction of the plant fitness (disease symptoms, weight, height, and appearance). In leaf-inoculated plants at 14 dpi, 15% of the plants exhibited severe blackleg-like symptoms. In detached S. dulcamara leaf assays, IPO2254 survived on the adaxial surface for 14 days at populations of 106 cfu per leaf. Thirty days after stem inoculation of plants grown in compost soil in pots, up to 104 cfu g−1 of GFP-tagged D. solani were found inside the stems. D. solani were detected inside the vascular tissue (xylem vessels) of stems, in the pith tissue in roots, and on the internal surface of the stem hollow. The implications of S. dulcamara infection by D. solani for the long-distance dispersal of the bacterial inoculum are discussed.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3