SNPs in a Large Genomic Scaffold Are Strongly Associated with Cr1R, Major Gene for Resistance to White Pine Blister Rust in Range-Wide Samples of Sugar Pine (Pinus lambertiana)

Author:

Wright Jessica W.1ORCID,Stevens Kristian A.2,Hodgskiss Paul1,Langley Charles H.3

Affiliation:

1. U.S. Department of Agriculture Forest Service, Pacific Southwest Research Station, Davis, CA 95618

2. Departments of Computer Science and Evolution and Ecology, University of California Davis, Davis, CA 95616

3. Department of Evolution and Ecology, University of California Davis, Davis, CA 95616

Abstract

Sugar pine, Pinus lambertiana Douglas, is a keystone species of montane forests from Baja California to southern Oregon. Like other North American white pines, populations of sugar pine have been greatly reduced by the disease white pine blister rust (WPBR) caused by a fungal pathogen, Cronartium ribicola, that was introduced into North America early in the twentieth century. Major gene resistance to WPBR segregating in natural populations has been documented in sugar pine. Indeed, the dominant resistance gene in this species, Cr1, was genetically mapped, although not precisely. Genomic single nucleotide polymorphisms (SNPs) placed in a large scaffold were reported to be associated with the allele for this major gene resistance (Cr1R). Forest restoration efforts often include sugar pine seed derived from the rare resistant individuals (typically Cr1R/Cr1r) identified through an expensive 2-year phenotypic testing program. To validate and geographically characterize the variation in this association and investigate its potential to expedite genetic improvement in forest restoration, we developed a simple PCR-based, diploid genotyping of DNA from needle tissue. By applying this to range-wide samples of susceptible and resistant (Cr1R) trees, we show that the SNPs exhibit a strong, though not complete, association with Cr1R. Paralleling earlier studies of the geographic distribution of Cr1R and the inferred demographic history of sugar pine, the resistance-associated SNPs are marginally more common in southern populations, as is the frequency of Cr1R. Although the strength of the association of the SNPs with Cr1R and thus, their predictive value, also varies with geography, the potential value of this new tool in quickly and efficiently identifying candidate WPBR-resistant seed trees is clear.

Funder

U.S. Department of Agriculture Forest Service

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3