Construction of High-Density Linkage Maps and Identification of Quantitative Trait Loci Associated with Verticillium Wilt Resistance in Autotetraploid Alfalfa (Medicago sativa L.)

Author:

Yu Long-Xi1ORCID,Zhang Fan2,Culma Cesar Medina1,Lin Sen1,Niu Yi1,Zhang Tiejun2,Yang Qingchuan2,Smith Mark3,Hu Jinguo1

Affiliation:

1. United States Department of Agriculture–Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, U.S.A.

2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China

3. S&W Seed Company, 4819 E. Lewis Lane, Nampa, ID, U.S.A.

Abstract

Verticillium wilt (VW) of alfalfa is a devastating disease that causes forage yield reductions of up to 50% in the northern United States and Canada. The most effective method for controlling the disease is through the development and use of resistant varieties. To identify quantitative trait loci (QTL) for VW resistance in alfalfa, we used a full-sib population segregating for VW resistance. High-density linkage maps for both resistant and susceptible parents were constructed using single-dose alleles of single-nucleotide polymorphism markers generated by genotyping-by-sequencing. Five QTL associated with VW resistance were identified and they were in four linkage groups (4D, 6B, 6D, and 8C). Of those, three QTL (qVW-6D-1, qVW-6D-2, and qVW-8C) had higher logarithm of odds. Two putative candidates of nucleotide-binding site leucine-rich repeat disease resistance genes were identified in the QTL intervals of qVW-6D-2 and qVW-8C, respectively. The result agreed with our previous studies, in which similar resistance loci were identified in an association panel using genome-wide association. The results provide insight into the quantitative resistance to VW in alfalfa. The resistance loci and closely linked markers identified in the present study can be used in developing new alfalfa varieties with enhanced resistance to VW.

Funder

USDA-ARS

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3