Affiliation:
1. First author: Agriculture and Agri-Food Canada, 430 Gouin Blvd., St-Jean-sur-Richelieu, Quebec, Canada J3B 3E6; second author: Department of Mathematics and Statistics, Université de Montréal, André-Aisenstadt Building, PO Box 6128, Centre-ville Station, Montréal, Quebec, Canada H3C 3J7; and third author: Syngenta Crop Protection, LLC, 410 South Swing Road, Greensboro, NC 27409.
Abstract
Botrytis fruit rot (BFR), one of the most important diseases of raspberry (Rubus spp.), is controlled primarily with fungicides. Despite the use of fungicides, crop losses due to BFR are high in most years. The aim of this study was to investigate the association between airborne inoculum, weather variables, and BFR in order to improve the management of the disease as well as harvest and storage decisions. Crop losses, measured as the percentage of diseased berries during the harvest period, were monitored in unsprayed field plots at four sites in three successive years, together with meteorological data and the number of conidia in the air. Based on windowpane analysis, there was no evidence of correlation between crop losses and temperature, vapor pressure deficit, wind, solar radiation, or probability of infection. There were significant correlations between crop losses and airborne inoculum and between crop losses and humidity-related variables, and the best window length was identified as 7 days. Using 7-day average airborne inoculum concentration combined with 7-day average relative humidity for periods ending 6 to 8 days before bloom, it was possible to accurately predict crop losses (R2 of 0.86 to 0.89). These models could be used to assist with managing BFR, timing harvests, and optimizing storage duration in raspberry crops.
Subject
Plant Science,Agronomy and Crop Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献