Resident Bacteria on Leaves Enhance Survival of Immigrant Cells of Salmonella enterica

Author:

Poza-Carrion Cesar,Suslow Trevor,Lindow Steven

Abstract

Although Salmonella enterica apparently has comparatively low epiphytic fitness on plants, external factors that would influence its ability to survive on plants after contamination would be of significance in the epidemiology of human diseases caused by this human pathogen. Viable population sizes of S. enterica applied to plants preinoculated with Pseudomonas syringae or either of two Erwinia herbicola strains was ≥10-fold higher than that on control plants that were not precolonized by such indigenous bacteria when assessed 24 to 72 h after the imposition of desiccation stress. The protective effect of P. fluorescens, which exhibited antibiosis toward S. enterica in vitro, was only ≈50% that conferred by other bacterial strains. Although S. enterica could produce small cellular aggregates after incubation on wet leaves for several days, and the cells in such aggregates were less susceptible to death upon acute dehydration than solitary cells (as determined by propidium iodide staining), most Salmonella cells were found as isolated cells when it was applied to leaves previously colonized by other bacterial species. The proportion of solitary cells of S. enterica coincident with aggregates of cells of preexisting epiphytic species that subsequently were judged as nonviable by viability staining on dry leaves was as much as 10-fold less than those that had landed on uncolonized portions of the leaf. Thus, survival of immigrant cells of S. enterica on plants appears to be strongly context dependent, and the presence of common epiphytic bacteria on plants can protect such immigrants from at least one key stress (i.e., desiccation) encountered on leaf surfaces.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3