A Single Dominant Locus, Ren4, Confers Rapid Non-Race-Specific Resistance to Grapevine Powdery Mildew

Author:

Ramming David W.,Gabler Franka,Smilanick Joe,Cadle-Davidson Molly,Barba Paola,Mahanil Siraprapa,Cadle-Davidson Lance

Abstract

In the present study we screened the progeny of Vitis vinifera × V. romanetii populations segregating for resistance to powdery mildew and determined the presence of a single, dominant locus, Ren4, conferring rapid and extreme resistance to the grapevine powdery mildew fungus Erysiphe necator. In each of nine Ren4 pseudo-backcross 2 (pBC2) and pBC3 populations (1,030 progeny), resistance fit a 1:1 segregation ratio and overall segregated as 543 resistant progeny to 487 susceptible. In full-sib progeny, microscopic observations revealed the reduction of penetration success rate (as indicated by the emergence of secondary hyphae) from 86% in susceptible progeny to below 10% in resistant progeny. Similarly, extreme differences were seen macroscopically. Ratings for Ren4 pBC2 population 03-3004 screened using natural infection in a California vineyard and greenhouse and using artificial inoculation of an aggressive New York isolate were fully consistent among all three pathogen sources and environments. From 2006 to 2010, Ren4 pBC2 and pBC3 vines were continuously screened in California and New York (in the center of diversity for E. necator), and no sporulating colonies were observed. For population 03-3004, severity ratings on leaves, shoots, berries, and rachises were highly correlated (R2 = 0.875 to 0.996) in the vineyard. Together, these data document a powdery mildew resistance mechanism not previously described in the Vitaceae or elsewhere, in which a dominantly inherited resistance prevents hyphal emergence and is non-race-specific and tissue-independent. In addition to its role in breeding for durable resistance, Ren4 may provide mechanistic insights into the early events that enable powdery mildew infection.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3